Abstract:
A process of dissolving in a solvent to produce a first mixture. To the first mixture a reagent is added to produce a second mixture. A H—R′—R″ is then added to the second mixture to produce a third mixture. The third mixture is then refluxed to produce
Abstract:
The present invention relates to an improved process for the production of 4-alkanoyloxy-2-methylbutanoic acid, as well as to the use of such compounds in organic syntheses, especially in processes forming intermediates (building blocks) for the synthesis of organic compounds comprising isoprene (isoterpene) units, such as β-carotene or other carotenoids (e.g. canthaxanthin, zeaxanthin or astaxanthin) or as vitamin E or vitamin A as well as other structurally similar compounds.
Abstract:
The invention relates to novel compounds of the formula (I) in which R1, R2, R3, R4, R5, Y, Q and G have the meanings given above, to a plurality of processes and intermediates for their preparation and to their use as herbicides and/or pesticides. Moreover, the invention relates to selective herbicidal compositions comprising, firstly, the phenyl-substituted bicyclooctane-1,3-dione derivates and, secondly, a crop plant compatibility-improving compound.The present invention furthermore relates to increasing the activity of crop protection compositions comprising in particular phenyl-substituted bicyclooctane-1,3-dione derivates by adding ammonium salts or phosphonium salts and, if appropriate, penetrants, to the corresponding compositions, to processes for their preparation and to their use in crop protection as pesticides and/or for preventing unwanted plant growth.
Abstract:
The present invention relates to methods for the preparation of solid-supported heterogeneous organic catalyst covalently bound to textile materials, preferably via photochemical immobilization. More specifically, the present invention relates to the organocatalysis and recognition process by using the textile-supported chiral molecules.
Abstract:
The present invention relates to a process of production of a compound, which is useful as an intermediate (building block) in organic synthesis, especially in the synthesis of vitamin A or β-carotene and derivatives thereof, e.g. canthaxanthin, astaxanthin or zeaxanthin.
Abstract:
The present invention includes methods for preparing resveratrol, resveratrol esters and substituted and unsubstituted stilbenes of the formula given below; where each Y is —O or halogen, each Z is —O or halogen, each n and each m is independently the value of 0, 1, 2, 3, 4 or 5, each A and each B is independently selected from Pn, R or absent, each V and each W is independently selected from Pn, straight or branched alkyl of from 2 to 6 carbon atoms and cycloalkyl of from 3 to 8 carbon atoms, alkoxy, phenyl, benzyl or halogen, R is independently selected from the group comprising alkyl with at least one carbon atom, aryl and aralkyl, Pn is an alcohol protecting group and diastereoisomers of the foregoing. The compounds are made from a multi-step process including a N-heterocyclic carbene-type ligand coupling in the presence of a base with benzyol halide and styrene coupling partners. These compounds show increased stability for use in the food, cosmetic and pharmaceutical industries.
Abstract:
The present invention is directed to methods for oxidizing internal olefins to ketones. In various embodiments, each method comprising contacting an organic substrate, having an initial internal olefin, with a mixture of (a) a biscationic palladium salt; and (b) an oxidizing agent; dissolved or dispersed in a solvent system to form a reaction mixture, said solvent system comprising at least one C2-6 carbon nitrile and optionally at least one secondary alkyl amide, said method conducted under conditions sufficient to convert at least 50 mol % of the initial internal olefin to a ketone, said ketone positioned on a carbon of the initial internal olefin. The transformation occurs at room temperature and shows wide substrate scope. Applications to the oxidation of seed oil derivatives and a bioactive natural product are described.
Abstract:
The present invention relates to a preparation method for a medicine and an intermediate compound thereof, specifically, relates to a preparation method for entecavir, an intermediate compound thereof, and a synthesis method for the intermediate compound.