Abstract:
An optically variable device may be manufactured by aligning magnetic flakes on a surface of an adhesive layer by applying the flakes onto the adhesive layer surface in presence of a magnetic field, and curing the adhesive layer having magnetic flakes adhered to the adhesive layer. When cured, the adhesive layer holds the magnetic flakes oriented, enabling subsequent encapsulation of the oriented magnetic flakes in a coating layer on the adhesive layer, without a substantial loss of orientation of the magnetic flakes.
Abstract:
A method is disclosed for preparing a substrate with a coating from a paste comprising the following steps: (a) providing a substrate; (b) preparing a paste from a glass frit to which ferromagnetic pigments and a flux agent are admixed; (c) applying the paste onto a surface of the substrate; (d) aligning the paste by means of a magnetic field; and (e) burning-in of the paste.
Abstract:
According to one embodiment, a solar device, comprises one or more photovoltaic cells disposed in an encapsulant and a light control structure including a louver film having a series of louver structures, wherein each louver structure includes one or more groupings of a plurality magnetizable particles aligned at least in a first orientation dispersed in a binding matrix. The light control structure substantially transmits light incident at a first angle and substantially limits transmission of light incident at a second angle. Each louver structure is spaced apart from an adjacent louver structure, wherein each louver structure is substantially aligned in a plane substantially parallel to an adjacent louver structure.
Abstract:
A facility for depositing a film of ordered particles onto a moving substrate, the facility configured to allow deposition, onto the substrate, of a film of ordered particles escaping from a particle outlet of a transfer zone having a first width. The facility further includes an accessory device in a form of a deposit head, provided to seal the particle outlet and configured to allow the deposition, onto the substrate, of a film of ordered particles escaping from an end of a particle transfer channel of the deposit head, the end having a second width strictly lower than the first width.
Abstract:
A facility for depositing a film of ordered particles onto a moving substrate, the facility configured to allow deposition, onto the substrate, of a film of ordered particles escaping from a particle outlet of a transfer zone having a first width. The facility further includes an accessory device in a form of a deposit head, provided to seal the particle outlet and configured to allow the deposition, onto the substrate, of a film of ordered particles escaping from an end of a particle transfer channel of the deposit head, the end having a second width strictly lower than the first width.
Abstract:
An optically variable device may be manufactured by aligning magnetic flakes on a surface of an adhesive layer by applying the flakes onto the adhesive layer surface in presence of a magnetic field, and curing the adhesive layer having magnetic flakes adhered to the adhesive layer. When cured, the adhesive layer holds the magnetic flakes oriented, enabling subsequent encapsulation of the oriented magnetic flakes in a coating layer on the adhesive layer, without a substantial loss of orientation of the magnetic flakes.
Abstract:
A method of generating micro-topography on a surface comprises the steps of using an analog signal to record a magnetic latent image corresponding to the micro-topography to be formed on the surface of a magnetic medium, applying to the magnetic medium a DC magnetic field weaker than its coercive force, supplying a magnetic fluid to the surface of the magnetic medium and allowing super-fine magnetic particles in the magnetic fluid to be attracted to and deposited on the magnetic medium in accordance with the intensity distribution of the leakage magnetic field from the magnetic latent image, and fixing the super-fine magnetic particles.
Abstract:
A method of making an optical film for control of light includes positioning a first mixture on a substrate, wherein the first mixture includes a first plurality of magnetizable particles dispersed in a first resin, assembling the first plurality of magnetizable particles into a desired structure for the control of the light by rotating modulation of at least a first magnetic field relative to the first plurality of magnetizable particles, and vitrifying the first resin while the first plurality of magnetizable particles are in the desired structure.
Abstract:
According to one embodiment, a solar device, comprises one or more photovoltaic cells disposed in an encapsulant and a light control structure including a louver film having a series of louver structures, wherein each louver structure includes one or more groupings of a plurality magnetizable particles aligned at least in a first orientation dispersed in a binding matrix. The light control structure substantially transmits light incident at a first angle and substantially limits transmission of light incident at a second angle. Each louver structure is spaced apart from an adjacent louver structure, wherein each louver structure is substantially aligned in a plane substantially parallel to an adjacent louver structure.
Abstract:
An optically variable device may be manufactured by aligning magnetic flakes on a surface of an adhesive layer by applying the flakes onto the adhesive layer surface in presence of a magnetic field, and curing the adhesive layer having magnetic flakes adhered to the adhesive layer. When cured, the adhesive layer holds the magnetic flakes oriented, enabling subsequent encapsulation of the oriented magnetic flakes in a coating layer on the adhesive layer, without a substantial loss of orientation of the magnetic flakes.