Abstract:
A ROLLING UNIT IN A ROLLING MILL FOR ROLLING METAL STOCK COMPRISES THREE ROLLS SPACED AT ANGLES OF 120* ABOUT A ROLLING AXIS. THE PERIPHERAL OUTLINES OF THE ROLLERS DEFINE THE SHAPE OF THE CROSS-SECTION DESIRED FOR THE METAL STOCK. MEANS ARE PROVIDED FOR SIMULTANEOUSLY COOLING AND LUBRICATING WITH A FIRST FLUID AT ADJUSTABLE PRESSURE THE METAL STOCK AND THE STOCK-ENGAGING SURFACES OF THE ROLLS AND WITH A SECOND FLUID AT INDEPENDENTLY ADJUSTABLE PRESSURE THE GUIDE MEMBERS WHICH SERVE TO GUIDE THE METAL STOCK AND THE REMAINING PORTIONS OF THE ROLLS NOT COOLED BY THE FIRST FLUID.
Abstract:
A lubricant is provided for use in hot working such as cross-roll rolling of a seamless steel pipe. It effectively reduces the friction coefficient between the working tools and the material under the hot work, thus extending the lives of the tools. The lubricant contains: (A) from about 10 to about 60 wt % of alkali silicate; (B) from about 1 to about 20 wt % of silane coupling agent; (C) from about 0.1 to about 5.0 wt % of at least one kind of alkali compound selected from a group consisting of an alkali hydroxide, an alkali carbonate, an alkali borate and an alkali salt of mineral acid; and (D) from about 30 to about 70 wt % of water. Alternatively, the lubricant contains: (A) from about 10 to about 60 wt % of alkali silicate; (B) from about 1 to about 20 wt % of silane coupling agent; (C) from about 0.1 to about 5.0 wt % of at least one kind of alkali compound selected from a group consisting of an alkali hydroxide, an alkali carbonate, an alkali borate and an alkali salt of mineral acid; (D) from about 5 to about 50 wt % of water; (E) from about 10 to about 60 wt % of iron oxide; and (F) from about 0.1 to about 5.0 wt % of at least one additive selected from a group consisting of a dispersant and a thickening agent.
Abstract:
The method of making copper rod by rolling is significantly improved by effectively controlling the water-soluble oil emulsion used to lubricate the rolls by employing a conductivity probe to maintain the conductivity of the emulsion within desired operating limits.
Abstract:
THIS IMPROVEMENT IN THE ART OF HOT WORKING COPPER AND COPPER ALLOYS IN THE PRESENCE OF AN OXYGEN-CONTAINING ENVIRONMENT TO MINIMIZE OR ELIMINATE THE PROBLEMS ASSOCIATED WITH OXIDE FORMATION ON THE SURFACE THEREOF AT ELEVATED TEMPERATURES COMPRISES CONTACTING THE STOCK SUBSTANTIALLY CONTINUOUSLY DURING THE HOT WORKING THEREOF WITH AN AQUEOUS SOLUTION CONTAINING AMMONIUM CHLORIDE.
Abstract:
A high efficiency stripper nozzle, with a through hole configured to be connected to the through hole of another nozzle, guide, or nozzle, which comprises several radial channels that pass through the nozzle from the perimeter zone to the hole at its entrance zone. The nozzle may be divided into several pieces which can be connected together in a removable way and replaceable, which may form the radial channels between them with different sections and angles with respect to the axis of the hole. The radial channels may contact externally with an opening located on one of the surfaces of the nozzle or on one of the surfaces of the nozzle to which the nozzle is connected.
Abstract:
A rolling oil supply system is configured to supply rolling oil to a rolling stand selected from a plurality of rolling stands included in a tandem rolling mill, a first rolling oil supply system configured to circulate and supply rolling oil after removing wear powder generated by rolling, and a second rolling oil supply system configured to supply rolling oil containing the wear powder generated by rolling are provided. Mixed rolling oil in which the rolling oil supplied from the first rolling oil supply system and the rolling oil supplied from the second rolling oil supply system are mixed is supplied to selected fourth and fifth rolling stands.
Abstract:
The present invention provides a system for supplying a lubricant necessary for efficiently manufacturing high-quality seamless pipes or tubes in a piercing mill, an apparatus for manufacturing seamless pipes or tubes having the supply system, and seamless pipes or tubes manufacturing method. The system for supplying a lubricant has a storage tank of the lubricant, a plumbing extending from the storage tank to a position near disk rolls, a nozzle provided at the tip of the plumbing, a device for switching flow direction provided in some midpoint of the plumbing, a plumbing extending from the device for switching flow direction to the storage tank, and a device for releasing pressure in a plumbing, provided between the switching device and the nozzle.
Abstract:
The present invention provides a system for supplying a lubricant necessary for efficiently manufacturing high-quality seamless pipes or tubes in a piercing mill, an apparatus for manufacturing seamless pipes or tubes having the supply system, and seamless pipes or tubes manufacturing method. The system for supplying a lubricant has a storage tank of the lubricant, a plumbing extending from the storage tank to a position near disk rolls, a nozzle provided at the tip of the plumbing, a device for switching flow direction provided in some midpoint of the plumbing, a plumbing extending from the device for switching flow direction to the storage tank, and a device for releasing pressure in a plumbing, provided between the switching device and the nozzle.
Abstract:
A lubricant is provided for use in hot working such as cross-roll rolling of a seamless steel pipe. It effectively reduces the friction coefficient between the working tools and the material under the hot work, thus extending the lives of the tools. The lubricant contains: (A) from about 10 to about 60 wt % of alkali silicate; (B) from about 1 to about 20 wt % of silane coupling agent; (C) from about 0.1 to about 5.0 wt % of at least one kind of alkali compound selected from a group consisting of an alkali hydroxide, an alkali carbonate, an alkali borate and an alkali salt of mineral acid; and (D) from about 30 to about 70 wt % of water. Alternatively, the lubricant contains: (A) from about 10 to about 60 wt % of alkali silicate; (B) from about 1 to about 20 wt % of silane coupling agent; (C) from about 0.1 to about 5.0 wt % of at least one kind of alkali compound selected from a group consisting of an alkali hydroxide, an alkali carbonate, an alkali borate and an alkali salt of mineral acid; (D) from about 5 to about 50 wt % of water; (E) from about 10 to about 60 wt % of iron oxide; and (F) from about 0.1 to about 5.0 wt % of at least one additive selected from a group consisting of a dispersant and a thickening agent.