Abstract:
A compressed air supply installation for operating an air suspension installation of a vehicle includes an air supply unit configured to supply air, an air compression unit configured to compress air, a bleeding line, and a compressed air supply line. The bleeding line includes a bleeding valve arrangement in the form of a controllable solenoid valve arrangement comprising a magnetic part and a pneumatic part actuatable directly via the magnetic part, and a bleeding port for bleeding air. The compressed air supply line includes an air dryer, and a compressed air port for supplying the pneumatic installation with compressed air. The pneumatic part is open in an unactivated state of the magnetic part of the solenoid valve arrangement. The pneumatic part is open in a branch line of the compressed air supply line between a pressure-side valve port and a control-side valve port of the branch line.
Abstract:
A compressed air supply installation for operating a pneumatic installation, especially an air suspension installation of a vehicle, includes an air supply unit and an air compression unit for supplying a compressed air supply unit with compressed air, a pneumatic connection, especially a bleeding line, comprising a bleeding valve and a bleeding port for bleeding air, and a pneumatic connection, especially a compressed air supply line having an air drier and a compressed air port for supplying the pneumatic installation with compressed air The air drier has a drier container through which compressed air can flow and which contains a desiccant. The drier container has a wall forming a desiccant-free recess, and at least part of the bleeding valve system is arranged in the recess.
Abstract:
A compressed air supply installation for operating a pneumatic installation, especially an air suspension installation of a vehicle, includes: an air supply unit and an air compression unit for supplying a compressed air supply unit with compressed air, a pneumatic connection, especially a bleeding line, comprising a bleeding valve system in the form of a controllable solenoid valve system and a bleeding port for bleeding air, and a pneumatic connection, especially a compressed air supply line, comprising an air drier and a compressed air port for supplying the compressed air. The solenoid valve system comprises a primary valve and a secondary valve, which are actuatable by a controller of the solenoid valve system that is common to both valves and acts upon both valves.
Abstract:
The invention relates to an air supply device (1) for a pneumatic spring system (9) of a vehicle, comprising an air filter as a processor (2) for incoming air, an inlet air line (3), an outlet air line (4), a compressor (5), and optionally an air drier (6), wherein the inlet air line (3) and the outlet air line (4) are decoupled by a first and a second check valve (7, 8) and the processor (2) is arranged between the compressor (5) and the first or second check valve (7, 8).
Abstract:
Disclosed is a level control system in which the operational readiness of the compressor (2) is tested by connecting the pressure sensor (10) to the output (6) of the compressor (2) via a compressed-air sensor line (8). All other compressed-air lines that are connected to the output (6) of the compressor (2) are locked by shutting directional control valves (201 to 20d and 30). The compressor (2) is then switched on and it is tested how rapidly the pressure increases on the pressure sensor (10). If the increase per interval exceeds a defined threshold value, the compressor is operationally ready.
Abstract:
In order to start vehicle height adjustment control even when an air suspension air tank is empty or sufficient air is not left therein, a vehicle height adjustment system includes a compressor which produces compressed air, a magnetic valve which controls air supply and discharge to/from air springs, a control unit which controls a valve opening/closing operation of the magnetic valve, an air passage which connects between the compressor and the magnetic valve through a main air tank bypassing the air suspension air tank, and an air suspension control pressure switch which detects an internal pressure value of the air passage. The control unit controls start and stop of air supply, namely, start and stop of vehicle height adjustment control at the magnetic valve, based on the internal pressure value detected by the air suspension control pressure switch.
Abstract:
An air spring arrangement of the motor vehicle is equipped with a tire-fill device which includes the fill unit (20) and a tire-fill connection unit (4). A filling of a reserve tire is ensured even when there is an electric fault in the level control system. The tire-fill connection unit (4) includes an air supply connection (6), a proximity switch (8), an electric sensor connection (10) and a pneumatic connection (12) for rapid coupling and valve connection. The proximity switch (8) includes a reed contact (28) which includes three terminals (32a, 32b, 32c) which are connected to a control apparatus (34). A component (14) has a pneumatic valve connection (16) and a permanent magnet (18) and is connected to the pneumatic connection (12). The permanent magnet (18) excites the reed contact (28) to switch when the component (14) is connected to the tire-fill connection unit (4).
Abstract:
The invention is directed to an air supply apparatus for a vehicle having pneumatic equipment such as air springs. The air supply apparatus includes a compressor and a muffler. The muffler (3) includes one or several hoses (11, 16, 17, 19, 20, 23, 24) of rubber or a rubber-like material and is subdivided in its interior into several chambers (15) by throttle positions (14).
Abstract:
The invention relates to a level control arrangement for vehicles having air springs (6a) to (6d) and a pneumatically controllable directional valve (26). A residual pressure holding function and an overpressure function are integrated into the directional valve (26). The directional valve (26) is controlled by the air pressure in the air springs (6a) to (6d). The air pressure can be applied via a control line (20) to a control input (24) of the directional valve (26). The air from the air springs (6a) to (6d) is released with the aid of the venting line (28). The venting line (28) is guided separately from the control line (20) through the directional valve (26). In this way, a large air flow can be conducted through the venting line (28) without the static air pressure in the control space (50) of the directional valve (26) being reduced. The venting line is blocked by a stepped piston (44) of the directional valve when no air is to be released from the air springs.
Abstract:
Level adjustment device for vehicles with air springs 8a through 8d, by which a vehicle body is furnished with suspension on at least one vehicle axle, which includes the following: a source of compressed air 2, which, for the purpose of filling air springs 8a through 8d, can be connected to air springs 8a through 8d via an air dryer 4, the air dryer 4, for the purpose of filling the air springs, is connected on one side to air springs 8a through 8d through a check valve 6 that is open to air springs 8a through 8d, each air spring 8a through 8d, for the purpose of emptying them, can be connected through the air dryer 4 and through a pneumatically controlled first distribution valve 10 to the atmosphere, wherein the pneumatic control input 38 of this distribution valve 10 is then impinged through a second controllable distribution valve 12 with the pressure in air springs 8a through 8d against a restoring force 50 acting on the pneumatic control input 38, the pneumatic control input 38 of the pneumatically controlled first distribution valve 10, for the purpose of ending the emptying process, can be connected to the atmosphere, wherein the air dryer 4 is connected on the other side to air springs 8a through 8d through a pneumatically controlled third distribution valve 14, wherein the pneumatic control input 44 of this distribution valve is then impinged with the pressure of air springs 8a through 8d against a restoring force 52 acting on the pneumatic control input 44.