摘要:
A method according to an embodiment is for recovering a valuable metal from a waste electrode material of a lithium secondary battery by using lithium carbonate. An anode-cathode mixed electrode material that has been separated by draining, crushing, screening, and sorting a waste lithium secondary battery is preprocessed. A precipitation operation performed by adding lithium carbonate (Li2CO3) to a metal melt acquired by performing sulfuric acid dissolution using sulfuric acid. A valuable metal such as nickel, cobalt, manganese, aluminum, and copper is recovered as a residue in the form of a carbonate composite, and a lithium sulfate (Li2SO4) aqueous solution including lithium is recovered as a filtrate.
摘要:
Process for precipitating a carbonate or (oxy)hydroxide comprising nickel from an aqueous solution of a nickel salt wherein such process is carried out in a vessel comprising (A) a vessel body, (B) one or more elements that control the hydraulic flow of the slurry formed during the precipitation and that induce a loop-type circulation flow, and (C) a stirrer whose stirrer element is in the vessel but located separately from the element(s) (B).
摘要:
Provided are an impurity-element removing method for selectively removing magnesium from a nickel-containing solution, and a method for producing high-purity nickel sulfate using the impurity-element removing method. The production method includes a production process in the production method of producing high-purity nickel sulfate from a nickel-containing solution, and the nickel-containing solution in the production process is subjected to an impurity-element removal treatment that includes: a hydroxylation step of adding an alkali hydroxide to the nickel-containing solution in the production process to form a hydroxylated slurry; a carbonation step of adding an alkali carbonate to the hydroxylated slurry to form a carbonated slurry, and recovering nickel component from the solution; a solid-liquid separation step for the slurry thus obtained; and a neutralization step of subjecting a solution after reaction obtained by solid-liquid separation to a neutralization, and recovering an impurity element included in the nickel-containing solution in the production process.
摘要:
The present invention provides a method for producing a nickel atom-, manganese atom- and cobalt atom-containing composite carbonate that is high in specific surface area and large in tap density, and useful as a raw material for producing a lithium nickel manganese cobalt composite oxide to be used in a positive electrode active material for use in a lithium secondary battery. The composite carbonate includes nickel atoms, manganese atoms and cobalt atoms, and has an average particle size of 5 μm or more and less than 20 μm, a BET specific surface area of 40 to 80 m2/g and a tap density of 1.7 g/ml or more.
摘要:
In the straight distillation of aqueous ammoniacal carbonate solutions containing nickel and cobalt for the non-selective recovery of these metals as a mixed precipitate consisting mainly of basic nickel and cobalt carbonates, cobalt recoveries are significantly improved by carrying out the distillation in the presence of small amounts of sulfide ions.
摘要:
TO A SALT SOLUTION OR HYDROUS SOL OF THE METAL OR METALS IS ADDED A POLYMER WHICH IS EITHER A POLYSACCHARIDE HAVING A MAIN CHAIN OF 1-6 LINKAGES, OR OF 1-4 LINKAGES WITH SUBSTITUENT GROUPS HAVING ETHER OR ESTER LINKAGES, E.G. GUAR GUM, OR A POLYALCOHOL, E.G. POLYVINYL ALCOHOL, WHICH COMPLEXES WITH THE METAL IONS PRESENT. A PRECIPITATING REAGENT, E.G. AN ALKALINE SOLUTION, IS ADDED GRADUALLY TO THW VISCOUS MIXTURE THUS FORMED WHILE AGITATING THE MIXTURE, RESULTING IN THE FORMATION OF A GEL-PARTICULATE PRECIPITATE.
摘要:
The present disclosure provides a method for preparing full-gradient particle precursors, and the full-gradient particle precursor prepared thereby. By controlling different types of anion compositions and/or cation compositions gradually changed to other types, and adjusting the pH to match with the species, precipitated particles are deposited to form a slurry, collecting the precipitated particle, treating with water, and drying to yield the particle precursor. After being washed and dried, the particle precursor is further mixed with lithium source, after calcining to yield cathode active particles. The cathode active particles can be used to prepare cathode of lithium-ion battery.
摘要:
A positive electrode active material precursor for a nonaqueous electrolyte secondary battery is provided that includes a nickel-cobalt-manganese carbonate composite represented by general formula NixCoyMnzMtCO3 (where x+y+z+t=1, 0.05≤x≤0.3, 0.1≤y≤0.4, 0.55≤z≤0.8, 0≤t≤0.1, and M denotes at least one additional element selected from a group consisting of Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, and W) and a hydrogen-containing functional group. The ratio H/Me of the amount of hydrogen H to the amount of metal components Me included in the positive electrode active material precursor is less than 1.60. The positive electrode active material further includes a secondary particle formed by a plurality of primary particles that have been aggregated.
摘要:
A method according to an embodiment is for recovering a valuable metal from a waste electrode material of a lithium secondary battery by using lithium carbonate. An anode-cathode mixed electrode material that has been separated by draining, crushing, screening, and sorting a waste lithium secondary battery is preprocessed. A precipitation operation performed by adding lithium carbonate (Li2CO3) to a metal melt acquired by performing sulfuric acid dissolution using sulfuric acid. A valuable metal such as nickel, cobalt, manganese, aluminum, and copper is recovered as a residue in the form of a carbonate composite, and a lithium sulfate (Li2SO4) aqueous solution including lithium is recovered as a filtrate.