Abstract:
The present invention comprises one or more organic solvents that create a non-aqueous organo solvent delivery system, (NOSDS), and one or more Organo Polycarboxylate functionalities, OPCF, that results in a stable, non-aqueous solution that can easily, safely, evenly and economically coat nitrogen source granules and/or be added to a mobile liquid form of a nitrogen source such as an aqueous dispersion, pressurized ammonia gas or molten urea and/or molten modified urea. Using these solvents provides more flexibility for nitrogen source manufacturers to produce nitrogen sources designed for a particular soil or plant. The liquid solutions are comprised of NOSDS and OPCFs and one or more of a) nitrification inhibitors, b) urease inhibitors, c) pesticides, d) fungicides, e) herbicides, f) insecticides and g) micronutrients.
Abstract:
A product form comprises an inanimate substrate comprising i) an active agent; and ii) carrier particles including at least an outer surface comprising an organic matter constituent, wherein the said active agent is combined within and/or on the surface of the carrier particles, the carrier particles being a) in dry, particulate form and carrying at least an electrostatic surface charge, and b) being at least substantially uniformly distributed over the outer surface of the substrate.
Abstract:
The disclosure provides strengthened products, including strengthened fibrous composite products and methods for making and using same and strengthened particulates, such as particulate fertilizer products, and methods for making and using same. The fibrous composite product can include a plurality of fibers and an at least partially cured strengthening resin. The fertilizer composition can include a particulate core that can include a plant nutrient, at least one coating layer of the strengthening resin, and at least one coating layer of a water insoluble material. The strengthening resin can include one or more aldehyde-based resins and one or more crosslinked resins. The crosslinked resin can include one or more polyamines at least partially crosslinked by one or more symmetric crosslinks and can include one or more azetidinium functional groups.
Abstract:
A method of hydroponic growing of plants comprising hydroponically growing the plants in the presence of a controlled release hydroponic fertilizer composition. The hydroponic fertilizer composition comprises a polymerically coated controlled release fertilization nutrient formulation which further comprises micronutrients and optionally chelated iron.
Abstract:
The invention relates to a conditioning agent for reducing water absorption and dust formation of a particulate fertilizer, comprising 10 to 50 weight % of wax, 40 to 90 weight % of mineral oil and 1 to 15 weight % of a resin being mineral oil-soluble and miscible with wax and mineral oil, wherein the agent further comprises 0.1 to 1 weight % of a viscoelastic elastomer selected from the group of polyisobutylene and styrene-isoprene-styrene block copolymer which is soluble in mineral oil and has an average molecular weight of 30.000 to 5.000.000. The invention further relates to a particulate fertilizer composition, preferably a urea-ammonium sulfate (UAS) fertilizer, a urea fertilizer or a calcium nitrate fertilizer, comprising a particulate substrate, preferably an hygroscopic fertilizer, preferably a nitrogen-containing fertilizer, and 0.05 to 2 weight % of said coating thereon for reducing moisture uptake and dust formation of said fertilizer.
Abstract:
An improved composition comprising substantial spherical UFP particles and an active agent, such as NBPT, and optionally other components is used as an additive for liquid and solid fertilizers, typically containing urea. Methods of making the compositions and their use are also disclosed.
Abstract:
The invention relates to a micronized composition. In particular the invention relates to a micronized composition, a coated fertilizer, a coated seed, a method of producing a micronized composition and a method of covering a granule. The micronized composition includes at least one type of water-soluble micronutrient, a clay binder and a dehydrating agent, the at least one water-soluble micronutrient, clay binder and dehydrating agent being micronized.
Abstract:
A process for producing polyurethane coated fertilizer granules having core granules in a rotating drum, wherein the drum has an inlet and an outlet and n application zones arranged along the longitudinal direction of the drum between the inlet and the outlet, n being an integer of at least 2 and wherein each of the application zones is followed by a curing zone. The curing zone after each application zone is arranged to allow an interval of 2-15 minutes, preferably 3-5 minutes, before the application in the successive application zone, wherein the polyol and the isocyanate are applied in the first application zone at a ratio of 0.5-4 wt %, preferably 1-3 wt % of the core granules. The process has the steps of: A) continuously feeding the core granules to the inlet of the rotating drum, thereby providing a flow of the core granules in the direction from the inlet to the outlet, B1) applying a polyol and an isocyanate to the core granules in each of the n application zones, the ratio of hydroxyl groups in the polyol to NCO groups in the isocyanate at the end of each of the application zones being in the range from about 0.9 to about 1.3, B2) reacting the polyol and the isocyanate to form a tack-free polyurethane layer in each of the n curing zones and C) continuously collecting the polyurethane coated fertilizer granules from the outlet.
Abstract:
A coated granule is obtained by coating a bioactive substance-containing granule with a urethane resin obtained by reaction of an aromatic diisocyanate with a polyol mixture containing a polyesterpolyol and a C2-C8 polymethylene glycol, wherein the molar ratio of the polyesterpolyol to the polymethylene glycol is 1:20 to 20:1. The granule is capable of controlling elution of the bioactive substance appropriately, and the urethane resin forming the coating film shows degradability in soil.
Abstract:
A controlled release fertilizer composition and methods to produce the controlled release fertilizer composition. The controlled release fertilizer composition includes a fertilizer core that is coated with a polymeric layer, such as polyurethane, that includes an organic carbonate additive.