Abstract:
The present disclosure is: a free polyunsaturated fatty acid-containing composition, which comprises at least one free polyunsaturated fatty acid having 20 or more carbon atoms, the content being at least 80.0% of the fatty acids in the composition, and satisfies at least one selected from a group consisting of conditions (1) and (2): (1) the content of conjugated unsaturated fatty acid is 1.0% or less of the fatty acids in the composition, and (2) the Gardner color is less than 3+; and a manufacturing method for the free polyunsaturated fatty acid-containing composition comprising the preparation of a raw material composition containing at least one polyunsaturated fatty acid having 20 or more carbon atoms, and hydrolysis of a reaction solution containing the prepared raw material composition, a lower alcohol, water and an alkali catalyst at a temperature of 10° C. or lower.
Abstract:
The present disclosure is: a free polyunsaturated fatty acid-containing composition, which comprises at least one free polyunsaturated fatty acid having 20 or more carbon atoms, the content being at least 80.0% of the fatty acids in the composition, and satisfies at least one selected from a group consisting of conditions (1) and (2): (1) the content of conjugated unsaturated fatty acid is 1.0% or less of the fatty acids in the composition, and (2) the Gardner color is less than 3+; and a manufacturing method for the free polyunsaturated fatty acid-containing composition comprising the preparation of a raw material composition containing at least one polyunsaturated fatty acid having 20 or more carbon atoms, and hydrolysis of a reaction solution containing the prepared raw material composition, a lower alcohol, water and an alkali catalyst at a temperature of 10° C. or lower.
Abstract:
A reactor and process for the production of bio-diesel. The reactor includes one or more coiled reaction lines. The lines are positioned within a tank containing a heat transfer media such as molten salt, maintained at about 750 F. A pump circulates the media within the tank. An emulsion of alcohol; refined feed stock, including glycerides and/or fatty acids; and preferably water is pumped through the reaction lines at temperatures and pressures sufficient to maintain the alcohol in a super-critical state. The curvature of the coils, pump pulsing, and the flow rate of the emulsion keep the emulsion in a turbulent state while in the reactor, ensuring thorough mixing of the alcohol and feed stock. The alcohol reacts with the glycerides and fatty acids to form bio-diesel. The reaction is fast, efficient with regard to energy input and waste generation, and requires minimal alcohol.
Abstract:
Described herein are methods of preparing cutin-derived monomers, oligomers, or combinations thereof from cutin-containing plant matter. The methods can include heating the cutin-derived plant matter in a solvent at elevated temperature and pressure. In some preferred embodiments, the methods can be carried out without the use of additional acidic or basic species.
Abstract:
Described herein are methods of preparing cutin-derived monomers, oligomers, or combinations thereof from cutin-containing plant matter. The methods can include heating the cutin-derived plant matter in a solvent at elevated temperature and pressure. In some preferred embodiments, the methods can be carried out without the use of additional acidic or basic species.
Abstract:
Process for the catalytic hydrogenation of vegetable oils wherein the oil is placed in contact with molecular hydrogen in the presence of a metal catalyst, and the process is performed in the absence of water or in the presence of a quantity of water equal to or less than 5:1 with respect to the weight of the metal catalyst and at a temperature equal to or less than 50° C.
Abstract:
A method for preparing an estolide compound and an estolide compound prepared thereby are disclosed. The method for preparing an estolide compound includes: converting biomass fat into a fatty acid; separating the fatty acid into a C16 saturated fatty acid and a C18 unsaturated fatty acid; preparing a linear internal olefin (LIO); increasing an amount of oleic acid through partial hydrogenation of the C18 unsaturated fatty acid; synthesizing an estolide polymer through cross metathesis of the oleic acid; capping the C16 saturated fatty acid onto the estolide polymer; and reacting the estolide polymer with the linear internal olefin.
Abstract:
The present invention relates to a method for preparing polyols of formula (I″) R′1 being H or an alkyl group, R″ being especially an alkyl group, A1, being an alkylene radical and R3, are being especially a group -A2-O—Y′, A2 being an alkylene radical and Y′ being especially H, said method especially comprising a step of epoxidation of a compound of formula R″1 being H or an alkyl group, At being defined as above in formula (I″) and R4 being especially a group -A2-O—Y1′, A2 being defined as above in formula (I″) and Y′1 being especially H, in order to obtain a compound of formula A1 being defined as above, R′″1 being H or an alkyl group and R5 being especially a group of formula -A2-O—Y2′, A2 being as defined above in formula (I″) and Y′2 being especially H.
Abstract:
Provided is a perfuming method including applying a water-based product to a fabric or a human body and drying, the water-based product containing a perfume precursor composed of an ester of at least one perfume selected from maltol, ethyl maltol, vanillin, ethyl vanillin, and raspberry ketone and at least one aliphatic monocarboxylic acid or aliphatic dicarboxylic acid selected from lauric acid, myristic acid, palimitic acid, stearic acid, oleic acid, adipic acid, and sebacic acid; and subsequently bringing the perfume precursor into contact with moisture in the air to perform hydrolysis, thereby releasing a perfume.
Abstract:
Disclosed herein are methods of reducing irritation associated with personal care and cosmetic compositions comprising 1,3-propanediol, wherein the 1,3-propanediol in said personal care or cosmetic composition has a bio-based carbon content of about 1% to 100%. In addition, it is preferred that the 1,3-propanediol be biologically-derived, and wherein upon biodegradation, the biologically-derived 1,3-propanediol contributes no anthropogenic carbon dioxide emissions to the atmosphere.