摘要:
The present invention provides: genetically modified yeasts such as mutant yeasts having an ability to produce N-linked sugar chains of Man5GlcNAc2 and a decreased ability to produce O-linked sugar chains, mutant yeasts having an ability to produce N-linked sugar chains of Man5GlcNAc2 and further having an ability to produce N-linked sugar chains of GlcNAc1Man5GlcNAc2, and mutant yeasts having an increased ability to produce and secrete proteins and an ability to produce N-linked sugar chains of Man5GlcNAc2; and a method for producing glycoproteins using them.
摘要:
The present disclosure relates to compositions and methods useful for the production of heterologous proteins with reduced O-mannosylation in filamentous fungal cells, such as Trichoderma cells. More specifically, the invention provides a PMT-deficient filamentous fungal cell comprising a) at least a first mutation that reduces an endogenous protease activity compared to a parental filamentous fungal cell which does not have said first mutation, and, b) at least a second mutation in a PMT gene that reduces endogenous O-mannosyltransferase activity compared to a parental filamentous fungal cell which does not have said second mutation, wherein said filamentous fungal cell is selected from the group consisting of Trichoderma, Neurospora, Myceliophthora or Chrysosporium cell.
摘要:
The present invention provides: genetically modified yeasts such as mutant yeasts having an ability to produce N-linked sugar chains of Man5GlcNAc2 and a decreased ability to produce O-linked sugar chains, mutant yeasts having an ability to produce N-linked sugar chains of Man5GlcNAc2 and further having an ability to produce N-linked sugar chains of GlcNAc1Man5GlcNAc2, and mutant yeasts having an increased ability to produce and secrete proteins and an ability to produce N-linked sugar chains of Man5GlcNAc2; and a method for producing glycoproteins using them.
摘要:
Lower eukaryote host cells in which expression of the endogenous protein mannosyltransferase 2 (PMT2) gene has been disrupted by introducing a nucleic acid molecule encoding a Pmt2p protein having a mutation in a conserved region of the protein. The mutation confers to the host cell resistance to PMT inhibitors, which are used to reduce the amount of O-glycosylation of recombinant proteins produced by the host cells but which also have the effect of reducing the robustness of the host cells during fermentation. When host cells that express the mutated PMT2 gene but not the endogenous Pmt2p are cultivated in the presence of a P MT inhibitor, the host cells display an increase in cellular robustness during fed-batch fermentation and express recombinant pro teins in high yield while the amounts O-glycosylation are similar to that produced under similar conditions by host cells that express only the endogenous P MT2 gene.