摘要:
The invention relates to a process for extracting metals and salts from titanium-bearing minerals such as perovskite. More particularly, although not exclusively, the invention relates to extracting titanium dioxide and optionally other compounds from melter slag derived from an iron-making process.
摘要:
A method for manufacturing alloy powders based on titanium, zirconium and hafnium alloyed with the elements Ni, Cu, Ta, W, Re, Os, and Ir is described in which an oxide of Ti and Zr and Hf is mixed with a metal powder of the elements named and with a reducing agent, and wherein this mixture is heated in a furnace, optionally under a argonate atmosphere or, optionally under hydrogen atmosphere until the reducing reaction begins, the reaction product is leached and then washed and dried, wherein the oxide used has an average grain size of 0.5 to 20 μm, a specific surface area according to BET of 0.5 20 m2/g and a minimum content of 94 wet. −%. An easy to produce powder, in particular in relation to the ignition point and burning time, is produced.
摘要:
A method for refining a titanium metal containing ore such as rutile or ilmenite or mixtures to produce titanium ingots or titanium alloys and compounds of titanium involves production of titanium tetrachloride by processing the ore with a chlorinating procedure and removing various impurities by a distillation or similar procedures to form a relatively pure titanium tetrachloride. Thereafter, the titanium tetrachloride is introduced continuously into a reactor at the focal point of a plasma under atmospheric pressures of inert gas along with molten metallic reductant for the initial reduction of gas phase titanium tetrachloride into molten titanium drops which are collected in a set of skulled crucibles. Thereafter, further processing is carried out at atmospheric pressures in under inert gas where the titanium is heated by plasma guns to maximize titanium purity and, in a final optional stage, alloying compounds are added under the same controlled environment and high temperature conditions.
摘要:
A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This “freezes” the desired end product(s) in the heated equilibrium reaction stage.
摘要:
Disclosed herein is a novel approach to the chemical synthesis of titanium metal from a titanium oxide source material. In the approach described herein, a titanium oxide source is reacted with Mg vapour to extract a pure Ti metal. The method disclosed herein is more scalable, cheaper, faster, and safer than prior art methods.
摘要:
The invention relates to a process for the production of metal alloy powders, in particular the invention relates to a process for producing titanium metal alloys from titanium dioxide and aluminium. Optionally the process can also include the use of one or more other oxides (metal or non-metal). The result is at least a Ti—Al alloy powder. If another metal oxide is used the result is a Ti-ternary alloy powder. If SiO2 is used the result is a Ti—Al—Si alloy.
摘要:
A process and system for producing tantalum or other valve metal particles is provided comprising forming tantalum particles in a reduction process carried out in a reactor vessel, and using a siphon to transfer fine tantalum particles out of the reaction mixture to a recovery vessel. This particle transfer can occur while the reaction mixture is agitated. The tantalum particles can be automatically withdrawn when the reaction mixture has a depth level greater than the fluid level of the tantalum fine particle recovery vessel, and outflow automatically stops when the fluid levels of the reactor and particle recovery vessel equilibrate. Tantalum or other valve metal powders made by the processes, and capacitors made with valve metal powders are also provided.
摘要:
A method of producing an elemental material or an alloy thereof from a halide or mixtures of halides is provided. The halide or mixtures thereof are contacted with a reducing gas in the presence of reductant material, preferably in sufficient quantity to convert the halide to the elemental material or alloy and to maintain the temperature of the reactants at a temperature lower than the boiling point of the reductant material at atmospheric pressure or the sintering temperature of the produced elemental material or alloy.