Abstract:
An improved top down furling system includes one or more improved components. A lower rotary drive unit with a rotary tack swivel rotates against a fixed portion of the furler, or is configured to permit routing of the tack line below the unit. The system may include an anti-torsion cable constructed in a manner so as to be able to transmit torque without excessive tension applied to the cable. The system also may include an end terminal of the anti-torsion cable having a quick side mount or bayonet type connection to the rotary drive unit.
Abstract:
A reinforcing cord of the present invention is a reinforcing cord (10) for rubber reinforcement including a fiber core (11) and a plurality of strands (12) disposed around the fiber core (11). The fiber core (11) is formed of one or a plurality of highly elastic fibers having a tensile elastic modulus of at least 100 GPa. Each of the plurality of strands (12) is formed of a plurality of glass fibers that are primarily twisted, and the plurality of strands (12) are finally twisted to be disposed around the fiber core (11). The direction of the final twist of the plurality of strands is opposite to the direction of the primary twist in each of the plurality of strands (12). The number of final twists of the plurality of strands (12) is 1.0 to 3.0 times/25 mm, and a ratio of the number of primary twists in each of the plurality of strands (12) to the number of final twists of the plurality of strands (12) (the number of primary twists/the number of final twists) is in a range of 1.5 to 2.5.
Abstract:
A belt for suspending and/or driving an elevator car includes a plurality of wires arranged into one or more cords and a jacket substantially retaining the one or more cords. Each cord includes a plurality of wires arranged around at least one non load-bearing core. An elevator system includes an elevator car and one or more sheaves. One or more belts are operably connected to the car and interactive with the one or more sheaves for suspending and/or driving the elevator car. Each belt of the one or more belts includes a plurality of wires arranged into one or more cords and a jacket substantially retaining the one or more cords. Each cord includes a plurality of wires arranged around at least one non load-bearing core.
Abstract:
The safety mountaineering rope (1) has a core comprising a plurality of core ropes (2).In order to improve the tearing resistance of the rope (1), the rope core surrounds in the manner of a tube at least one cavity (3) extending over the entire length of the rope (1). In this case the cavity (3 )is filled by means of at least one resilient filling material or body, resilient at least as viewed in the radial direction of the rope (1), and which, when the rope (1) is pulled over an edge and with a high tensile force for example, results in a considerable momentary flattening of the cross-section of the rope when pulled over the edge and thus a considerably wider support of the rope (1) on such an edge. In addition, the rope core (2) is surrounded by a rope sheathing (4) provided with a protective layer (5) impervious to particles of dirt.
Abstract:
A reinforcing cord for a belt ply or a carcass ply of a pneumatic vehicle tire is provided and comprises a core filament and four to six ply filaments. The core filament is comprised of an elastically or plastically deformable polymeric material, or is encased with such a material, which fills the space surrounded by the ply filaments and/or penetrates into the gaps between the ply filaments.
Abstract:
An energy-absorbing towline (14) comprises an elastomeric core (16) having a set of internal polymeric strands (18) helically wound around the outer surface (20) of the core in a first direction and a set of external polymeric strands (22) helically wound around the outer surface (24) of the internal strands in a direction opposite to the first direction. There may be more internal strands than external strands in order to maintain torque balance as the cable elongates. Each of the internal and external strands consists of a plurality of filaments (30), and each external strand (22) may have fewer strand filaments than each internal strand (18) so as to aid in torque balancing. Electrical conductors (26) may be helically disposed between turns of the external or the internal strands. When the towline experiences tension, the elastomeric core elongates, as do the helixes. But the diameters of the helixes contract, so the strands themselves do not elongate. Consequently, the towline can elongate in response to tension and thereby absorb energy without placing any significant tensile stress on the electrical conductors used for electrical communication between a moving craft and a deployed drogue.
Abstract:
A reinforcing cord of the present invention is a reinforcing cord (10) for rubber reinforcement including a fiber core (11) and a plurality of strands (12) disposed around the fiber core (11). The fiber core (11) is formed of one or a plurality of highly elastic fibers having a tensile elastic modulus of at least 100 GPa. Each of the plurality of strands (12) is formed of a plurality of glass fibers that are primarily twisted, and the plurality of strands (12) are finally twisted to be disposed around the fiber core (11). The direction of the final twist of the plurality of strands is opposite to the direction of the primary twist in each of the plurality of strands (12). The number of final twists of the plurality of strands (12) is 1.0 to 3.0 times/25 mm, and a ratio of the number of primary twists in each of the plurality of strands (12) to the number of final twists of the plurality of strands (12) (the number of primary twists/the number of final twists) is in a range of 1.5 to 2.5.
Abstract:
A safety elastic rope includes an elastic outer tubular rope having two longitudinally opposite first fixing ends, and an elastic inner rope inserted into the outer tubular rope and having two longitudinally opposite second fixing ends. The inner rope is more elastic than the outer tubular rope, and has substantially the same length as the outer tubular rope. The second fixing ends are connected respectively to the first fixing ends.