摘要:
This invention relates to the field of internal combustion engines and compressors in general and to linear compressors, in particular these used as in U.S. Pat. No. 8,056,527, by accurately controlling the pressure being delivered into the combustion chambers of said engine while returning unused energy of the compression phase into the motor for complete expansion.Another improvement relates to a pressure compensated vane to be used inside grooves of the motor assembly rotor. This invention enables the vane to seal against the cavity of the housing tightly with minimal force.
摘要:
A non-Wankel rotary engine having an insert in the peripheral wall of the outer body, the insert being made of a material having a greater heat resistance than that of the peripheral wall, having a subchamber defined therein and having an inner surface bordering the cavity, the subchamber communicating with the cavity through at least one opening defined in the inner surface and having a shape forming a reduced cross-section adjacent the opening, a pilot fuel injector having a tip received in the subchamber, an ignition element having a tip received in the subchamber, and a main fuel injector extending through the housing and having a tip communicating with the cavity at a location spaced apart from the insert.
摘要:
In one aspect, described is a rotary engine having a purge port located rearwardly of the inlet port and forwardly of the exhaust port along a direction of the revolutions of the rotor, the purge port being in communication with the exhaust port through each of the chambers along a respective portion of each revolution, and the inlet and outlet ports being relatively located such that a volumetric compression ratio of the engine is lower than a volumetric expansion ratio of the engine.
摘要:
A method of controlling an air intake flow in a rotary engine having primary and secondary inlet ports, including positioning the secondary inlet port rearwardly of the primary inlet port and forwardly of the exhaust port along a direction of a revolution of the rotor, and controlling air intake flows communicating between an air source and the primary and secondary inlet ports. During engine start-up, a primary valve is closed to prevent the intake air flow between the primary inlet port and the air source and a secondary valve is opened to allow the intake air flow between the secondary inlet port and the air source. A rotary engine defining different compression ratios through actuation of a valve is also discussed.
摘要:
A hydraulic device (1) comprising a housing (2) and a gerotor (3) contained within the housing (2), the gerotor (3) having an inner rotor (4) eccentrically disposed within an outer ring (5), the outer ring having a central axis (19), the outer ring (5) being fixed to the housing, the inner rotor (4) having external lobes (4a) extending radially outwardly engaging the outer ring (5) having internal lobes (5a) extending radially inwardly, the inner rotor (4) being arranged for orbital and rotational movement relative the outer ring (5), wherein the orbital and rotational movement will define a plurality of expanding and contracting volume pressure chambers (7) between the inner rotor (4) and the outer ring (5). The hydraulic device (1) comprises a fluid feeder tube (8) with a central axis (19), the fluid feeder tube (8) is provided with at least one fluid inlet line (8a, 8c) and at least one fluid outlet line (8b, 8d), the inner rotor (4) is adapted to slide against a drive shaft cylinder (10b), the drive shaft cylinder (10b) having a circumference which is eccentrically disposed relative the central axis (19), the inner rotor (4) comprises at least one radial fluid feeder channel (9) disposed radially from the center of and through the inner rotor (4) and out to at least one of the plurality of expanding and contracting volume pressure chambers (7), wherein said fluid inlet line (8a, 8c) and said fluid outlet line (8b, 8d) respectively are radially connectable to said radial fluid feeder channel (9) for fluid communication into and out from said expanding and contracting volume pressure chambers (7).
摘要:
A gerotor device includes a valving plate, a balancing plate structure, and a rotor positioned between the valving plate and the balancing plate structure. High pressure fluid flowing from the valving plate toward the rotor pushes the rotor toward the balancing plate structure. The balancing plate structure includes a balancing plate and a second plate. A cavity is defined between the balancing plate and the second plate. The balancing plate includes a fluid passage having a check valve and fluid passes through the fluid passage for pressuring the cavity. The balancing plate includes first and second relief holes extending through the balancing plate connected with the cavity.
摘要:
Devices and methods for moving a working fluid through a controlled thermodynamic cycle in a positive displacement fluid-handling device (20, 20′, 20″) with minimal energy input include continuously varying the relative compression and expansion ratios of the working fluid in respective compressor and expander sections without diminishing volumetric efficiency. In one embodiment, a rotating valve plate arrangement (40, 42, 44, 46) is provided with moveable apertures or windows (48, 50, 56, 58) for conducting the passage of the working fluid in a manner which enables on-the-fly management of the thermodynamic efficiency of the device (20) under varying conditions in order to maximize the amount of mechanical work needed to move the target quantity of heat absorbed and released by the working fluid. When operated in refrigeration modes, the work required to move the heat is minimized. In power modes, the work extracted for the given input heat is maximized.
摘要:
A respiratory therapy device including a housing and an interrupter valve assembly. The housing is sized for handling by a patient and defines a patient breathing passage extending from a patient end and through which a patient inhales and exhales air. The interrupter valve assembly is carried by the housing and includes a control port, a valve body, and a drive mechanism. Expiratory airflow is released from the patient breathing passage through the control port. The valve body is sized to at least partially obstruct fluid flow through the control port. The drive mechanism moves the valve body relative to the control port in response to the expiratory airflow such that the valve body repeatedly transitions between a position of maximum obstruction and a position of minimum obstruction relative to the control port to create an oscillatory positive expiratory pressure effect.
摘要:
A rotor housing assembly is adapted such that a barrel valve is arranged to regulate the flow of fuel/air mixture both from outside the housing assembly into an internal lubrication flow path and from the internal lubrication flow path into an internal chamber. The barrel valve includes a substantially cylindrical valve member diagonally traversed by a separation plate, dividing the interior of the valve member into an inlet chamber and an outlet chamber. Fuel/air mixture entering the housing assembly from outside passes through the inlet chamber and fuel/air mixture entering the internal chamber passes through the outlet chamber.
摘要:
A respiratory therapy device including a housing and an interrupter valve assembly. The housing is sized for handling by a patient and defines a patient breathing passage extending from a patient end and through which a patient inhales and exhales air. The interrupter valve assembly is carried by the housing and includes a control port, a valve body, and a drive mechanism. Expiratory airflow is released from the patient breathing passage through the control port. The valve body is sized to at least partially obstruct fluid flow through the control port. The drive mechanism moves the valve body relative to the control port in response to the expiratory airflow such that the valve body repeatedly transitions between a position of maximum obstruction and a position of minimum obstruction relative to the control port to create an oscillatory positive expiratory pressure effect.