Abstract:
A linear energy harvesting device that includes a housing and a piston that moves at least partially through the housing when it is compressed or extended from a rest position. When the piston moves, hydraulic fluid is pressurized and drives a hydraulic motor. The hydraulic motor drives an electric generator that produces electricity. Both the motor and generator are central to the device housing. Exemplary configurations are disclosed such as monotube, twin-tube, tri-tube and rotary based designs that each incorporates an integrated energy harvesting apparatus. By varying the electrical characteristics on an internal generator, the kinematic characteristics of the energy harvesting apparatus can be dynamically altered. In another mode, the apparatus can be used as an actuator to create linear movement. Applications include vehicle suspension systems (to act as the primary damper component), railcar bogie dampers, or industrial applications such as machinery dampers and wave energy harvesters, and electro-hydraulic actuators.
Abstract:
An electricity generating device comprising a housing; a first lobed rotor and a second lobed rotor rotatably arranged in a fluid passage enclosed by the housing such that the lobes of the first and the second lobed rotor intermesh to create a barrier between a high-pressure and a low-pressure side of the housing during operation of the device; a first electricity generator to which the first lobed rotor is coupled, the first electricity generator being capable of varying the load of the first lobed rotor; and a second electricity generator to which the second lobed rotor is coupled, the second electricity generator being capable of varying the load of the second lobed rotor. There is also provided a method of synchronizing rotational positions of a first lobed rotor coupled to a first electricity generator and a second lobed rotor connected to a second electricity generator in a turbine.
Abstract:
An mechanical power system provides torque without using a heat engine where fossil-fuel engines have conventionally been used, by replacing the fossil-fuel burning engine with a rotary pneumatic motor and feeding pressure-regulated compressed gas to the rotary pneumatic motor. The rotary pneumatic motor can be used anywhere, and requires preferably compressed nitrogen in a non-liquid state. Automotive, marine and electrical generating applications are adaptable, and auxiliary power is available for emergencies where a supply of compressed gas has been exhausted. A screw-type compressor can be electrically powered to supply compressed gas to the pneumatic motor where tanks of compressed gas have been exhausted. An electrical generating power plant includes an array of solar panels for generating direct current (DC) and a DC/AC converter for converting the DC to alternating current (AC) and outputting a portion of the AC via a power plant output port to supply an AC load.
Abstract:
Provided herein are multiple variations, applications, and variations for producing electrical power from a flowing fluid such as a gas or liquid under pressure, for example natural gas flowing through a pipeline, by means of one or more positive displacement devices that drive one or more electrical generators. The electrical generators may be immersed in the flow stream together with the positive displacement devices as disclosed, or alternately may be isolated from the flow stream, such as by magnetic coupling, in order to promote longevity and to decrease the risk of accidental discharge or explosion of the fluid in the flow stream. To further decrease such risks, the positive displacement devices may isolate the drive fluid from the environment without the use of dynamic seals.
Abstract:
A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the “pressure cell”) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
Abstract:
A power generation apparatus according to the present invention includes: an expander; a generator that includes a generator rotor driven by the expander and a stator disposed outside the generator rotor in the radial direction; and a casing that includes an expander chamber accommodating the expander and a generator chamber accommodating the generator. The casing includes a first communication portion that causes an expansion chamber which gradually expands a working medium by the expander in the expander chamber to communicate with a front generator portion which is located nearer the expansion chamber than the generator in the generator chamber and a second communication portion that causes a portion which is a downstream portion from the expansion chamber and is located near the expansion chamber with respect to the generator to communicate with the front generator portion.
Abstract:
In a system combining a power generation apparatus and a desalination apparatus, the power generation apparatus includes a circulation circuit in which a first heat exchanger, an expander, a second heat exchanger having a space, the second heat exchanger for evaporating seawater and generating water vapor, and a working medium pump are connected in series, and a power generator, and the desalination apparatus includes a suction pump for suctioning a gas in the space, a control device for driving the suction pump in such a manner that an atmospheric pressure in the space becomes a saturated water vapor pressure, a condenser for condensing the water vapor led from the space, and a sweet water storage tank for storing sweet water (W) condensed in the condenser.
Abstract:
A respiratory therapy device including a housing and an interrupter valve assembly. The housing is sized for handling by a patient and defines a patient breathing passage extending from a patient end and through which a patient inhales and exhales air. The interrupter valve assembly is carried by the housing and includes a control port, a valve body, and a drive mechanism. Expiratory airflow is released from the patient breathing passage through the control port. The valve body is sized to at least partially obstruct fluid flow through the control port. The drive mechanism moves the valve body relative to the control port in response to the expiratory airflow such that the valve body repeatedly transitions between a position of maximum obstruction and a position of minimum obstruction relative to the control port to create an oscillatory positive expiratory pressure effect.
Abstract:
A compressed-air energy storage system according to embodiments of the present invention comprises a reversible mechanism to compress and expand air, one or more compressed air storage tanks, a control system, one or more heat exchangers, and, in certain embodiments of the invention, a motor-generator. The reversible air compressor-expander uses mechanical power to compress air (when it is acting as a compressor) and converts the energy stored in compressed air to mechanical power (when it is acting as an expander). In certain embodiments, the compressor-expander comprises one or more stages, each stage consisting of pressure vessel (the “pressure cell”) partially filled with water or other liquid. In some embodiments, the pressure vessel communicates with one or more cylinder devices to exchange air and liquid with the cylinder chamber(s) thereof. Suitable valving allows air to enter and leave the pressure cell and cylinder device, if present, under electronic control.
Abstract:
A Rankine cycle circuit is constituted by an expander, which forms a fluid machine, a condenser, a gear pump, which forms a fluid machine, and a boiler. A discharge passage is connected to a discharge chamber of a pump chamber. A branch passage is connected to the discharge passage, and a restriction passage is provided at the end of the branch passage. The restriction passage is open to an internal space K in a generator housing. An outflow passage extends through a partition wall of a center housing member and a side plate. The internal space K in which an alternator is located communicates with an outlet chamber through the outflow passage.