Abstract:
An engine includes: an exhaust manifold 7 close to one of left and right side surfaces of an engine; a turbocharger 60 having an exhaust-side inlet connected to the exhaust manifold 7; and a rocker-arm-chamber-integrated intake manifold 8 being disposed on an upper surface of a cylinder head 5 and integrally including a rocker arm chamber 90 and an intake manifold 6. The intake manifold 8 has a wall 101 dividing the rocker arm chamber 90 close to the one of the left and right side surfaces of the engine 1 and the intake manifold 6 close to the other of the left and right side surfaces to isolate the rocker arm chamber 90 and the intake manifold 6 from each other. The rocker arm chamber 90 has, in its upper portion, a positive crankcase ventilation device 69 protruding therefrom and being configured to return blowby gas to an intake system. The positive crankcase ventilation device 69 has, in its side surface, a blowby-gas discharge port 67 connected with a gas conduit 68 through which blowby gas is delivered to an intake-side inlet of the turbocharger 60.
Abstract:
A gas turbine engine comprises bearing(s). A structure supporting the bearing defines a bearing cavity surrounding the at least one bearing, an ambient chamber and an intermediate chamber having a portion between the bearing cavity and the ambient chamber, with at least one wall forming a passage from the bearing cavity to the ambient chamber and through the portion of the intermediate chamber. A tube is received in the passage and having a first end open to the bearing cavity and a second end open to the ambient chamber, the second end adapted to be connected to a conduit for fluid communication between the bearing cavity and the through the tube, wherein a portion of or near the first end of the tube is sealingly joined to the at least one wall, and the second end of the tube contacts the at least one wall and is free to move relative to the at least one wall.
Abstract:
An engine lubrication structure supplies oil from an oil pump to individual components of an engine in which a balancer shaft is disposed parallel with a crank shaft in a crank case, the engine includes a turbocharger which compresses intake air using exhaust gas of the engine; a main gallery which supplies oil to a bearing of the crank shaft and a bearing of the balancer shaft and a sub-gallery which supplies, to individual components of the engine, oil that has been supplied to the bearing of the balancer shaft are provided in the crank case; and an oil passage which supplies oil to the turbocharger is connected to the sub-gallery.
Abstract:
An engine lubrication structure supplies oil from an oil pump to individual components of an engine in which a balancer shaft is disposed parallel with a crank shaft in a crank case, the engine includes a turbocharger which compresses intake air using exhaust gas of the engine; a main gallery which supplies oil to a bearing of the crank shaft and a bearing of the balancer shaft and a sub-gallery which supplies, to individual components of the engine, oil that has been supplied to the bearing of the balancer shaft are provided in the crank case; and an oil passage which supplies oil to the turbocharger is connected to the sub-gallery.
Abstract:
A lubricating configuration in a two-stroke cycle, opposed-piston engine for a piston wristpin minimizes losses in oil pressure at the wristpin as the piston approaches bottom center and reduces the required oil supply pressure to the engine. The wristpin is constructed to absorb and store oil pressure energy when oil pressure at the wristpin is high, and to release that stored energy to pressurize the oil at the wristpin when connecting rod oil pressure is low.
Abstract:
To provide a supercharger mounting structure for an engine that enables a supercharger to be easily fitted to or removed from an engine main body, the supercharger mounting structure for the engine includes a supercharger including a compressing unit for supplying an intake air under pressure to the engine, a speed increasing unit for increasing the rotational speed of an engine rotary shaft and then transmitting it to the compressing unit and a supercharger casing for accommodating the compressing unit and the speed increasing unit. The supercharger casing is removably fitted to a crankcase of the engine.
Abstract:
An oil filter and an oil cooler of a motorcycle combustion engine are disposed on an outer surface of an engine body side by side in a right-left direction. A first engine lubrication passage extending in the right-left direction is connected to an outflow passage for the oil cooler. A second engine lubrication passage is connected to the first engine lubrication passage, to extend frontward, and is disposed parallel to an inflow passage and an outflow passage for the oil filter. A third engine lubrication passage is connected to the second engine lubrication passage and extends upward from the second engine lubrication passage in front of the first engine lubrication passage.
Abstract:
A feed line for connecting an oil pump to a turbocharger supplies oil to the turbocharger when the oil pump is active. The feed line includes a turbo end and a pump end, which is lower than the turbo end relative to gravity. Oil drains from at least the pump end of the feed line when the oil pump is not active. The feed line has a center axis running therethrough, and a pool zone is disposed between the pump end and the turbo end of the feed line. The center axis of the feed line drops from a main line level on either side of the pool zone to a trap level in the pool zone. The pool zone therefore retains oil when the oil pump is not active.
Abstract:
An oil control valve assembly for an engine is provided that has a control valve with a valve body, and a manifold that defines a control passage in fluid communication with a valve lift switching component and an exhaust passage for exhausting fluid from the valve. The control valve is controllable to selectively direct fluid from a supply source to the control passage to actuate the valve lift switching component. An elongated tubular member is positioned adjacent the engine component and is operatively connected to the exhaust passage such that fluid flows from the exhaust passage to the elongated tubular member and through the elongated tubular member onto the engine component.
Abstract:
A turbocharger system for an internal combustion engine includes a turbocharger with a utility pedestal extending between the turbocharger and hard point associated with the cylinder block. The utility pedestal includes a mounting pad for attaching the combined turbocharger and pedestal assembly to an engine, as well as internal oil and coolant supply passages for supplying the turbocharger with coolant and lubricating oil under pressure.