Abstract:
Methods and systems are provided for an electric turbocharger (e-turbo). In one example, a method may include monitoring an e-turbo parameter or an engine parameter, comparing the monitored e-turbo or engine parameter to a determined threshold value for the e-turbo or engine parameter, and signaling a status of the e-turbo in response to the monitored e-turbo or engine parameter differing from the determined threshold value by at least a threshold amount.
Abstract:
A device and a method for communicating data link information associated with a machine is provided. The device includes a light source comprising a Light Emitting Diode (LED). The device includes a controller configured to transmit a query, to the machine, for different types of information related to the machine, the different types of information including a first type of information, a second type of information, and a third type of information. Upon receiving a response indicating the availability of one or more types of information among the different types of information, the controller is configured to provide a first indication, a second indication, a third indication, a fourth indication, or a fifth indication. The controller is further configured to transmit data regarding the one or more types of information that are available.
Abstract:
A cleanliness measuring system for an engine cylinder block includes a set of fittings configured for receipt at least partially within oil passage openings of a lubrication system of the engine cylinder block. Each of the fittings includes a fluid collection passage therethrough. The cleanliness measuring system also includes a set of fluid sampling bottles configured for attachment to the fittings. In an attached configuration of the cleanliness measuring system, each of the fluid sampling bottles is attached to one of the fittings and the fittings are secured within one of the oil passage openings, a fluid is introduced into the lubrication system, the fluid and any debris carried by the fluid from within oil passages of the engine cylinder block flow into the fluid sampling bottles, and debris collected in the fluid sampling bottles is measured to determine a cleanliness level of the engine cylinder block.
Abstract:
A machine may comprise a piston; a memory; and an electronic control module. The electronic control module may be configured to determine a temperature of a bowl rim of the piston; calculate a temperature of an oil gallery of the piston based on the temperature of the bowl rim; determine a carbon deposit growth rate of the piston based on the temperature of the oil gallery; determine an amount of time between a current time and the time when the previous carbon deposit growth was calculated; calculate a current carbon deposit growth on the piston; and take a remedial action based on the current carbon deposit growth. The current carbon deposit growth may be calculated based on: a previous carbon deposit growth on the piston, an amount of time between a current time and a time when the previous carbon deposit growth was calculated, and the carbon deposit growth rate.
Abstract:
Systems and methods are provided for a diagnostic system for a machine with a combustion engine and a variable geometry turbocharger that includes a vane position sensor. The diagnostic system includes a controller configured to calculate a learned span value of the turbocharger based on the output of the vane position sensor during a diagnostic procedure and a reference vane position sensor value. A plurality of learned span values are calculated each during a different one of a plurality of diagnostic procedures performed over a period of time and a first regression analysis to predict an expected learned span value at a defined future time using the calculated learned span value and the plurality of stored learned span values. An alert message is generated when the expected learned span value is indicative of a potential future fault of the turbocharger.
Abstract:
The invention relates to a method for monitoring at least one exhaust gas turbocharger (ATL) of a large internal combustion engine (BKM), comprising at least one compressor (1a) and one exhaust gas turbine (1b) arranged on the same shaft as the compressor, wherein the current pressures (p1, p2) upstream and downstream of the compressor (1a) and the current temperatures (T1, T4) upstream of the compressor (1a) and upstream of the exhaust gas turbine (1b) are measured. In order to monitor an exhaust gas turbocharger effectively and as simply as possible, the current pressures (p4, p5) upstream and downstream of the exhaust gas turbine (1b), the current temperatures (T2, T5) downstream of the compressor (1a) and downstream of the exhaust gas turbine (1b), and the rotational speed (nA) of the exhaust gas turbine (1b) are measured, preferably continuously, the efficiencies (ηv) of the compressor (1a) and of the exhaust gas turbine (1b) are calculated from the measured data, and a diagnostic algorithm is started when a worsening of the efficiency (ηTV, ηT) of the compressor (1a) and/or of the exhaust gas turbine (1b) is detected or after a defined time interval has elapsed.
Abstract:
The present invention is an apparatus and a method for monitoring a sliding state of a piston ring. The present invention detects a cycle of rotation of a piston ring based on a temperature at a predetermined site of a cylinder liner, and determines a sign of burning of a piston based on a state of the rotation. As a result, it is possible to detect a sign of burning of a piston by an apparatus less expensive than apparatuses using a conventional technique of detecting a capacitance.
Abstract:
A method for training technicians to diagnose certain induced electronic faults using an internal combustion on a test stand engine capable of having faults inserted into electronic circuits. The faults are inserted into the engine by the instructor using switches concealed from the trainee. While the engine is operating the trainee, using diagnostic equipment, the trainee attempts to locate the electrical fault using a combination of observing symptoms and signal tracing.
Abstract:
There is disclosed a malfunction diagnostic apparatus for a vehicle control system wherein a period of time after the last detection of a malfunction state is set by a timer, to inhibit the display of stored information when the period of time has exceeded over a specific period of time, and to release the inhibited display in accordance with an inhibition release signal.
Abstract:
An intelligent electronic device (IED) may monitor wet stack residue buildup of a diesel engine. Once the wet stack residue accumulates to a certain amount, the IED may perform a mitigation procedure. Additionally, tracking wet stack residue buildup may allow an IED to attempt to prevent or reduce accumulation of the wet stack residue. The IED may track an operating power level of the diesel engine to estimate the rate of residue buildup.