Abstract:
An object of the invention is to achieve a travel speed known in the art during travelling operation, improve energy efficiency by reducing energy loss, and obtain favorable travel operability less susceptible to effects from variations in a travel load and changes in a pump delivery pressure when travelling operation is performed through operation of a travel lever over a half stroke range or less. A variable restrictor valve 80 is disposed in parallel with a flow sensing valve 50 of an engine speed sensing valve unit 13. A travel pilot pressure is adapted to act in an opening direction of the variable restrictor valve 80. The variable restrictor valve 80 is set to have a continuously increasing opening area from a full closure to a maximum with an increasing travel pilot pressure. Travel flow control valves 6d and 6e have an opening area that allows a predetermined flow rate QT required for traveling to be obtained even when a target LS differential pressure is decreased to a second specified value Pa3 when the travel lever is fully operated. In a first half of a spool stroke, the travel flow control valves 6d and 6e have an opening area approximate to an opening area of comparative example 1.
Abstract:
A hydraulic control assembly for a plurality of consumers includes, for each consumer, a supply metering orifice configured to control fluid flow. A flow-sensing fluid-flow-path extends over detection orifices positioned hydraulically in series, whereby a detection orifice is assigned to each supply metering orifice. The fluid-flow-path is connected to a hydraulic pump upstream of the detection orifices, and a control device of the hydraulic pump downstream of the detection orifices. Each detection orifice is configured to close the fluid-flow-path upon detecting a fluid supply deficiency for a corresponding consumer, whereby the control device is configured to interact with the fluid-flow-path such that fluid flow from the hydraulic pump is increased. When no customers have a supply deficiency, the fluid-flow-path over the detection orifices is fully opened, and the control device is configured to reduce fluid flow from the hydraulic pump.
Abstract:
A drive device of a construction machine includes a pump passage connected to a hydraulic pump, first and second supply passages connected to the pump passage, first and second passages connected to the first supply passage, third and fourth passages connected to the second supply passage, a first valve connected to the first and third passages, a second valve connected to the second and fourth passages, a first bucket passage connecting the first passage to a cap-side space of the bucket cylinder through the first valve, a second bucket passage connecting the third passage to a rod-side space of the bucket cylinder through the first valve, a first arm passage connecting the second passage to a rod-side space of an arm cylinder through the second valve, and a second arm passage connecting the fourth passage to a cap-side space of the arm cylinder through the second valve.
Abstract:
A hydraulic system includes a source of pressurized fluid, a plurality of fluid actuators, each fluid actuator associated with an implement control system for hydraulically controlling the fluid actuator, and a load sense signal conditioning passageway fluidly connecting each of the implement control systems and configured to facilitate flow sharing between each of the implement control systems. Each of the fluid actuators includes a first chamber and a second chamber, and each of the implement control systems includes: a head-end IM supply valve configured to selectively fluidly connect the source with the first chamber; a rod-end IM supply valve configured to selectively fluidly connect the source with the second chamber; and a load compensating valve configured to control a pressure of a fluid directed between the source and the head-end IM supply and rod-end IM supply valves in response to a load acting on the fluid actuator.
Abstract:
A hydraulic control valve assembly to be integrated into a pressure compensated load sensing system including a fluid source is provided. The hydraulic control valve assembly includes a first working unit to control a first hydraulic function of a machine. The first working unit includes a first directional and return flow control in the form of a first spool, a first function flow control to selectively communicate a working pressure of the first function to the fluid source, and a first downstream flow control. The hydraulic control valve assembly further includes a second working unit arranged downstream of the first working unit. The second working unit to control a second hydraulic function of the machine. The first downstream flow control to selectively restrict a flow a fluid from the fluid source to the second working unit.
Abstract:
In a hydraulic driving system for construction machines, when track motors 3f and 3g are operated and the delivery pressure of a main pump 2 increases to a second value PS2 of the set pressure of a main relief valve 14, the set pressure of a signal pressure relief valve 16 increases from a third value PA1 to a fourth value PA2, which is smaller than the second value PS2 of the set pressure of the main relief valve 14, the difference between the second value PS2 and the fourth value PA2 being smaller than the target LS differential pressure. With such a structure, even if one of actuators reaches the stroke end and the delivery pressure of the hydraulic pump rises to the set pressure of the main relief valve, the other actuators do not stop, and further when the main relief valve is configured to increase the set pressure during operation of a specific actuator, the load pressure of the specific actuator does not increase to the increased set pressure of the main relief valve.
Abstract:
A hydraulic drive system for a track device of crawler type has right and left hydraulic track motors. The hydraulic drive system is capable of correcting for skew occurring in the straight line traveling of the track device. A traveling test is conducted upon shipment from a factory. If skew is noted during the test, a plug disposed on the side of a valve opening-side pressure receiving portion of a pressure compensating valve for the track which is lower in speed is removed and, replaced with an adjusting mechanism-mounted plug having an adjusting pin. The pin is operated so as to strengthen a biasing force of a target compensating differential pressure adjusting spring. An opening in the pressure compensating valve is thereby corrected in an opening direction and a flow rate to one of the left and right track motors is thereby adjusted to be equal to the other motor.
Abstract:
A valve arrangement has an adjustable control valve (10) including a control slide (12) for actuating at least one consumer connection (A, B) and an LS control line. The differential pressure of two actuating pressures (xa, xb) serves for the actuation of the control slide (12). Since the actuating pressures (xa, xb) also actuate a logic valve, which in turn influences an additional valve, and/or actuates a pressure compensator connected upstream to the control valve (10), the difference of the two actuating pressures (xa, xb) initially displaces the control slide of the control valve. The higher or the lower of the two actuating pressures (xa, xb) either actuate the further valve in the form of the additional valve, and/or influences the pressure compensator.
Abstract:
A fluid system and method of operation provides flow force compensation and load sense functions. Each work circuit includes an actuator, a control valve, and a first valve. A valve element of a control valve includes main metering orifices sized and shaped to provide flow force compensation. A load sense check valve associated with a load pressure signal conduit is downstream of the load check valve. The load pressure signal conduit of each work circuit is in fluid communication with one another, and a greater of the load signal pressure of the work circuits is communicated to the load sense check valve of the other work circuit. The control valve associated the lesser load can permit flow forces to reduce the effective area of the orifice, which increases the pressure difference across the valve to maintain approximately constant flow to the actuator.
Abstract:
A fixed/variable hybrid system has modified constant flow open center hydraulic valves (“fixed/variable valves”), including an open center core, spools, a power core, and a tank galley. A small fixed displacement pump provides fluid at a constant rate to the open center core. A variable displacement piston pump provides fluid directly to the power core as needed. Activation of spools partially restricts the open center core causing an increase in fluid pressure that is communicated to the variable displacement piston pump's load sense signal port, causing the pump to increase fluid flow and pressure to the power core. Activated spools direct pressurized fluid from the power core to the applications through selected hydraulic ports. Activated spools also direct fluid flow from selected hydraulic ports via the tank galley to a hydraulic tank. Pumping the majority of fluid only on an as-needed basis results in significant efficiencies.