Abstract:
A loop-type heat pipe includes a loop-type heat pipe main body including a loop-shaped flow path in which a working fluid is enclosed, a first magnet provided to the loop-type heat pipe main body, a heat dissipation plate thermally connected to the loop-type heat pipe main body, and a second magnet provided to the heat dissipation plate and provided to face the first magnet. The first magnet and the second magnet are provided so that different magnetic poles face to each other.
Abstract:
Embodiments of the present invention disclose a liquid cooling apparatus, which includes a cold plate (202), a fast connector (204), and a first interface (2011), where the fast connector (204) includes a first connector (2041) and a second connector (2042), where the first connector (2041) is fixedly connected to the cold plate (202); the first interface (2011) is configured to connect to a second interface (2012) corresponding to the first interface; and the liquid cooling apparatus further includes a guide rail (203), where the guide rail (203) is a moving rail of the second connector (2042), and when the first connector (2041) and the second connector (2042) are in a connected state and the second connector (2042) is located at an end on the guide rail (203) that is close to a board (201), a distance between the first interface (2011) and the second interface (2012) is greater than 0.
Abstract:
A heat exchange system can include a heat exchange unit and a magnetic element. The heat exchange unit can have a housing and a heat exchange surface configured to thermally couple to a subject of heat exchange. The housing can define an outer surface spaced apart from the heat exchange surface. A magnetic element, a ferrous element, or both, can be positioned within the housing. A coupling agent can have a complementary magnetic element, ferrous element, or both. The coupling agent can interact with the magnetic element, the ferrous element, or both, positioned within the housing. The coupling agent can be coupled to a substrate to retain the heat exchange unit relative to the substrate.
Abstract:
Embodiments of the present invention disclose a liquid cooling apparatus, which includes a cold plate (202), a fast connector (204), and a first interface (2011), where the fast connector (204) includes a first connector (2041) and a second connector (2042), where the first connector (2041) is fixedly connected to the cold plate (202); the first interface (2011) is configured to connect to a second interface (2012) corresponding to the first interface; and the liquid cooling apparatus further includes a guide rail (203), where the guide rail (203) is a moving rail of the second connector (2042), and when the first connector (2041) and the second connector (2042) are in a connected state and the second connector (2042) is located at an end on the guide rail (203) that is close to a board (201), a distance between the first interface (2011) and the second interface (2012) is greater than 0.
Abstract:
A solar panel mounting structure includes: a fixation member as an angle member firmly fixed onto a roofing composed of a metal plate as a magnetic material; solar panels, each of which is rotatably held on the fixation member while interposing an insertion/extraction hinge mounted on an upper edge of an erected portion of the fixation member; and a magnetic engaging device provided between the solar panel and the roofing in order to detachably fix the solar panel to the roofing. The fixation member is firmly fixed to the roofing while interposing a double-sided adhesive tape and an adhesive agent therebetween. The magnetic engaging device includes: a cup-like casing mounted to a lower surface of the solar panel by a screw; and a ferrite magnet firmly fixed into the casing.
Abstract:
A wind turbine with a tower; a nacelle supported by said tower; at least one unit to be cooled and arranged in the tower or the nacelle; a tower mounted heat exchange structure arranged outside the nacelle and tower; and a circuit facilitating a flow of a fluid medium between the at least one unit and the heat exchange structure. To improve thermal convection with the ambient space, the heat exchange structure comprises a set of panels mutually angled and extending outwards from the tower such that a flow of ambient air can pass transversely trough the panels and thereby cool the unit.
Abstract:
A pre-chill system for reducing the temperature of air entering a cooling system includes a wicking material sheet and a series of frame segments. The frame segments are operable to secure the wicking material sheet to an outer casing of the cooling system in a path along which air enters the cooling system, each of the series of frame segments including one or more magnets magnetically attachable to the cooling system. A misting system is capable of directing moisture adjacent an outer face of the wicking material sheet. The frame segments are magnetically attachable to the outer casing of the cooling system over the wicking material sheet so as to retain the wicking material sheet against the outer casing with the wicking material sheet held between the frame segments and the outer casing.
Abstract:
Devices configured to direct heat flow are disclosed, as well as methods of forming thereof. A device may include a self-assembling heat flow object. The self-assembling heat flow object may include a material having one or more self-assembling properties that cause the material to react to an environmental stimulus and one or more thermal pathways. An application of the environmental stimulus causes the self-assembling heat flow object to deploy and arrange the one or more thermal pathways for directing thermal energy to one or more locations.
Abstract:
A heat sink assembly includes a heat sink. The heat sink includes a base. The base defines a hermetic space. The base includes a panel body and a plurality of magnetic posts extending from the panel body. The plurality of magnetic posts are located in the hermetic space.
Abstract:
The add-on heat sink includes an elongate base having a plurality of fins extending from a surface thereof. A magnetic layer is disposed on the bottom of the base, which permits the add-on heat sink to be installed on any ferromagnetic heated surface. The magnetic layer is composed of either a polymer matrix having a plurality of thermally conductive structural components and a plurality of magnetic particles dispersed therein, or a thermally conductive polymer having magnetic particles dispersed therein. Alternatively, if the heated surface is not ferromagnetic, the heat sink may be magnetically attached by adhesively attaching mating magnetic and ferromagnetic pads to the heat sink and to the heated surface. This configuration allows the add-on heat sink to be installed with minimal footprint. Optionally, a fan may be magnetically attached to the heat sink to cool the heated surface by both conduction and convection.