摘要:
A spectroscopic sensor 1 comprises an interference filter unit 20, having a cavity layer 21 and first and second mirror layers 22, 23 opposing each other through the cavity layer 21, for selectively transmitting therethrough light in a predetermined wavelength range according to an incident position thereof; a light-transmitting substrate 3, arranged on the first mirror layer 22 side, for transmitting therethrough light incident on the interference filter unit 20; a light-detecting substrate 4, arranged on the second mirror layer 23 side, for detecting the light transmitted through the interference filter unit 20; and a first coupling layer 11 arranged between the interference filter unit 20 and the light-transmitting substrate 3. The cavity layer 21 and the first coupling layer 11 are silicon oxide films.
摘要:
Systems, tools, and methods are presented for processing a plurality of spectral ranges from an electromagnetic radiation that has been interacted with a fluid. Each spectral range within the plurality corresponds to a property of the fluid or a constituent therein. In one instance, a series of spectral analyzers, each including an integrated computational element coupled to an optical transducer, forms a monolithic structure to receive interacted electromagnetic radiation from the fluid. Each spectral analyzer is configured to process one of the plurality of spectral ranges. The series is ordered so spectral ranges are processed progressively from shortest wavelengths to longest wavelengths as interacted electromagnetic radiation propagates therethrough. Other systems, tools, and methods are presented.
摘要:
A monolithic semiconductor chip defines a plurality of subarrays of optical detector regions, wherein each subarray of optical detector regions includes a corresponding plurality of optical detector regions and wherein each subarray of optical detector regions has the same relative spatial arrangement of optical detector regions as each of the other subarrays of optical detector regions. A multi-spectral optical sensor comprises the monolithic semiconductor chip, a plurality of optical filters, and a plurality of lens elements, wherein each optical filter is aligned between a corresponding lens element and a corresponding subarray of optical detector regions such that light which is incident on any one of the lens elements along a direction of incidence converges through the corresponding optical filter onto a corresponding one of the optical detector regions of the corresponding subarray of optical detector regions, which corresponding one of the optical detector regions depends on the direction of incidence. Such a multi-spectral optical sensor may be used to measure spectral information relating to different parts or sectors of a scene captured by an image sensor or a camera. A multi-spectral optical system and an image sensing system are also disclosed which comprise the multi-spectral optical sensor.
摘要:
An optical spectrometer may include an optical filter including a plurality of filter layers formed on a base substrate. The filter layers may include a perovskite material and at least two filter layers among the plurality of filter layers may include perovskite materials having different composition ratios from each other. The filter layers may show respective band-gap characteristics in different optical wavelength ranges from each other, in an optical absorption spectrum and/or an optical transmission spectrum.
摘要:
A solid-state image sensor and an imaging system with a two-dimensional pixel array, and a plurality of types of filters that are arranged facing a pixel region of the two-dimensional pixel array, the filters each including a spectrum function and a periodic fine pattern shorter than a wavelength to be detected, wherein each of the filters forms a unit which is larger than the photoelectric conversion device of each pixel on the two-dimensional pixel array, where one type of filter is arranged for a plurality of adjacent photoelectric conversion device groups, wherein the plurality of types of filters are arranged for adjacent unit groups to form a filter bank, and wherein the filter banks are arranged in a unit of N×M, where N and M are integers of one or more, facing the pixel region of the two-dimensional pixel array.
摘要:
The present technology relates to solid-state image sensor and an imaging system which are capable of providing a solid-state image sensor and an imaging system which are capable of realizing a spectroscopic/imaging device for visible/near-infrared light having a high sensitivity and high wavelength resolution, and of achieving two-dimensional spectrum mapping with high spatial resolution. There are provided a two-dimensional pixel array, and a plurality of types of filters that are arranged facing a pixel region of the two-dimensional pixel array, the filters each including a spectrum function and a periodic fine pattern shorter than a wavelength to be detected, wherein each of the filters forms a unit which is larger than the photoelectric conversion device of each pixel on the two-dimensional pixel array, where one type of filter is arranged for a plurality of adjacent photoelectric conversion device groups, wherein the plurality of types of filters are arranged for adjacent unit groups to form a filter bank, and wherein the filter banks are arranged in a unit of N×M, where N and M are integers of one or more, facing the pixel region of the two-dimensional pixel array.
摘要:
The present technology relates to solid-state image sensor and an imaging system which are capable of providing a solid-state image sensor and an imaging system which are capable of realizing a spectroscopic/imaging device for visible/near-infrared light having a high sensitivity and high wavelength resolution, and of achieving two-dimensional spectrum mapping with high spatial resolution. There are provided a two-dimensional pixel array, and a plurality of types of filters that are arranged facing a pixel region of the two-dimensional pixel array, the filters each including a spectrum function and a periodic fine pattern shorter than a wavelength to be detected, wherein each of the filters forms a unit which is larger than the photoelectric conversion device of each pixel on the two-dimensional pixel array, where one type of filter is arranged for a plurality of adjacent photoelectric conversion device groups, wherein the plurality of types of filters are arranged for adjacent unit groups to form a filter bank, and wherein the filter banks are arranged in a unit of N×M, where N and M are integers of one or more, facing the pixel region of the two-dimensional pixel array.