Abstract:
A method for scanning a target object is provided. The method includes generating a scanning path including source poses at which a target object is scanned by a scanning source. The method also includes moving the target object along the scanning path and emitting a beam towards a region of interest (ROI) on the target object at each source pose. The method further includes receiving data characterizing the ROI based on the emitted beam and generating scanning data representing a geometrical position and an orientation of the ROI of the target object for each source pose. Pose information can be extracted based on the source poses and a 3D model of the target object can be reconstructed using the pose information and the scanning data and provided for display. Related systems and non-transitory computer readable mediums are also provided.
Abstract:
A defect inspection system includes an X-ray generator that generates X-ray to be irradiated to a structure, and an X-ray detector that detects the X-ray generated by the X-ray generator and transmitted through the structure. In particular, the X-ray generator is configured to be moved by a first transporting means, and the X-ray detector is configured to be moved by a second transporting means. The system further includes a control unit configured to control and operate the first transporting means and the second transporting means.
Abstract:
An X-ray inspection apparatus includes a stage that moves an inspection object, an X-ray source, and/or an X-ray camera by driving a motor, a position detection unit that periodically obtains a position detection value of the motor, and stores the value in association with time, an imaging timing obtaining unit that stores an imaging timing at which imaging is performed by the X-ray camera in association with time, an imaging position calculation unit that calculates relative positions of the inspection object, and the X-ray source and the X-ray camera corresponding to the imaging timing using the position detection value of the motor at the imaging timing, and a reconstruction unit that performs reconstruction using image data captured by the X-ray camera and the relative positions in the image data at the imaging timing.
Abstract:
A method for obtaining a 3D image dataset of an object of interest is proposed. A plurality of 2D X-ray images are captured and a 3D reconstruction is carried out using filtered back projection. The projection parameters have been measured with the aid of a calibrating phantom, possibly using an interpolation or extrapolation of such measurements. A model of effect strings of the components in an X-ray imaging device is obtained, and the model parameters are identified based on imaging of a calibrating phantom. A projection matrix can then be calculated for any positions on any desired trajectories, without having to use imaging of a calibrating phantom at precisely that position and desired trajectory.
Abstract:
A drive mechanism for a mobile imaging system comprises a main drive geared into a drive wheel for propelling the imaging system, including a base and one or more imaging components, across a surface. The drive mechanism can also include a scan drive that moves the drive mechanism and the one or more imaging components along an axis relative to the base to provide an imaging scan, and a suspension drive that extends the drive wheel relative to a bottom surface when the imaging system is in a transport mode and retracts the drive wheel relative to the bottom surface of the base when the imaging system is in an imaging mode. The drive wheel supports the weight of the imaging components, but does not directly support the base assembly, which can include pedestal and tabletop support. One or more casters located on the base can support the weight of the base assembly.
Abstract:
A nuclear density gauge includes a base and at least one gamma radiation detector mounted at a predetermined location relative to an axis extending longitudinally of the base. The gauge further includes a gamma radiation source and a source mount that mounts the gamma radiation source for movement along a path between an active first position located at a first longitudinal distance from the detector and an active second position located at a second longitudinal distance from the detector. In this way, gamma radiation is detected emanating from the source and backscattered from the underlying material sample through a first path of travel when the source mount is at the first active position and through a second path of travel when the source mount is at the second active position. The source mount may also move the source from the active first and second positions to an inactive third position shielded by gamma radiation shielding material.
Abstract:
A nuclear density gauge includes a base and at least one gamma radiation detector mounted at a predetermined location relative to an axis extending longitudinally of the base. The gauge further includes a gamma radiation source and a source mount that mounts the gamma radiation source for movement along a path between an active first position located at a first longitudinal distance from the detector and an active second position located at a second longitudinal distance from the detector. In this way, gamma radiation is detected emanating from the source and backscattered from the underlying material sample through a first path of travel when the source mount is at the first active position and through a second path of travel when the source mount is at the second active position. The source mount may also move the source from the active first and second positions to an inactive third position shielded by gamma radiation shielding material.
Abstract:
The invention discloses a method and an apparatus for measuring lattice spacings in particular of a single crystal during the growth thereof by vapor deposition while located in a heating furnace.
Abstract:
Seal element for a pipeline pig, which is transferable from a propulsion position into a sealing position, in which the seal element presses against an inside of a pipeline wall, wherein the seal element has at least one preferably ring-shaped hollow body, which can be filled with fluid and emptied, whereby the seal element is transferable between propulsion position and sealing position.
Abstract:
A method for X-ray computed tomography includes a robotic arm that moves an X-ray emitter around a subject in a curvilinear path and an X-ray detector that captures 2-dimensional views while the subject is scanned. Movements of the emitter and detector are coordinated such that the position and angle of the emitter relative to the detector remains substantially constant during scanning. A processor uses computed tomography to reconstruct an image of the subject from the captured 2-dimensional views. The robotic arm varies the pitch of the X-ray emitter during the scan to enhance the spatial resolution of the reconstructed image. The processor generates a projection transformation matrix based on movement of the robotic arm for each captured 2-dimensional view that is applied during reconstruction.