Abstract:
A thermal poling method in which a poling treatment can be performed easily by a dry process. The poling treatment is performed on a PZT film by performing a heat treatment on the PZT film under a pressurized oxygen atmosphere at a temperature of 400° C. or more and 900° C. or less. The PZT film before the heat treatment has a single-domain crystal structure, and the PZT film after the heat treatment has a multi-domain crystal structure.
Abstract:
A micropositioning device for a piezoelectric actuator includes a means for controlling an electric field applied to the piezoelectric actuator so as to deform the piezoelectric material, and means for simultaneous measurement of a variation of electric charge accumulated on the piezoelectric actuator resulting from the deformation; and means for acquiring measurements of the variation of electric charge, for processing these acquisitions and for estimating a displacement (x, y, z) of the piezoelectric actuator and/or an applied force.
Abstract:
A manufacturing method according to an embodiment of the invention includes a first step of providing a sheet substrate having a piezoelectric resonator element and an integrated circuit disposed on a mounting surface of each substrate region, having implementation electrodes that are electrically connected to the integrated circuit disposed the side facing away from the mounting surface, and disposing wiring lines on the sheet substrate, the wiring liens electrically connecting the piezoelectric resonator element disposed in a first substrate region to the implementation electrode in a second substrate region in the vicinity of the piezoelectric resonator element, a second step of inputting and outputting a signal to and from the piezoelectric resonator element in the first substrate region via the implementation electrodes connected to the wiring lines, and a third step of dividing the sheet substrate along the substrate regions to cut the wiring lines.
Abstract:
A transducer system that includes a piezoelectric transducer and a self-diagnosis system electrically connected to the transducer. In one embodiment, the self-diagnosis system is configured to detect when a debonding defect has occurred in the bond between the transducer and a host structure and to detect when a crack has occurred in the transducer itself. The self-diagnosis system implements debonding-detection and crack-detection schemes that can distinguish between debonding and cracking, as well as distinguish these problems from changes arising from temperature variation.
Abstract:
In the two-probe case, a detector circuit to detect stress or damage in an object may include a first electrode to be positioned on the object, a second electrode to be positioned on the object, a current circuit to measure the current to the first electrode, a voltage circuit to generate a voltage for the first electrode, a controller circuit to determine and record the changing impedance between the first electrode and a second electrode. In the four-probe case, a detector circuit to detect stress or damage in an object may include a first electrode to be positioned on the object, a second electrode to be positioned on the object, a third electrode to be positioned on the object, a fourth electrode to be positioned on the object, a current source to generate current to the first electrode, a current circuit to measure the current to the second electrode, a voltage circuit to measure the voltage between the third and fourth electrodes, a controller circuit to determine and record the changing impedance between the third electrode and the fourth electrode.
Abstract:
A system and method are provided for monitoring performance capacity of a piezoelectric material that may form part of an actuator or sensor device. A switch is used to selectively electrically couple an inductor to the piezoelectric material to form an inductor-capacitor circuit. Resonance is induced in the inductor-capacitor circuit when the switch is operated to create the circuit. The resonance of the inductor-capacitor circuit is monitored with the frequency of the resonance being indicative of performance capacity of the device's piezoelectric material.
Abstract:
A method for quickly screening piezoelectric transformer apparatuses having low mechanical strength and latent defects is performed by connecting a load impedance to a generator of a piezoelectric transformer apparatus and applying a stress signal to an actuator to vibrate the piezoelectric transformer apparatus. Latent-defect transformer apparatuses having low mechanical strength are damaged during this process and therefore can be easily identified.
Abstract:
A polarization apparatus is provided wherein a piezoelectric body tube 3 is wound around a first rotation drum 5 and a second rotation drum 6 and a coaxial flexible piezoelectric body 2 is polarized while the piezoelectric body tube 3 is wound. According to the polarization apparatus, polarization can be conducted except for the coaxial flexible piezoelectric body 2 of the portion containing a defect and a defect existing in the piezoelectric body tube 3 of a given length can also be detected before an outer electrode 4 is formed.
Abstract:
Roughly described, piezoelectric actuators are tested as part of an assembly using a three-stage process. In the first stage, a substantially steady state electromechanical potential is induced into a piezoelectric member of an assembly. Typically this can be accomplished by applying a DC voltage across the crystal for long enough period of time for it to achieve a substantially steady state mechanical distortion. In the second stage, the electromechanical potential of the piezoelectric actuator is discharged rapidly but incompletely. The third stage begins with the abrupt termination of the rapid-discharge stage, thereby causing the crystal, and the voltage produced across it, to oscillate and decay freely. The voltage across the crystal continues to decay slowly in the third stage, and the oscillations continue to decay in magnitude as well, providing a relatively complex signal from which features can be extracted and compared to those of known-good devices.
Abstract:
A method for determining a resonant frequency of a mechanical device having a first mass and at least one second mass mechanically coupled to the first mass comprises the steps of: providing a control signal to a voltage-controlled oscillator (VCO) to control the frequency of an output thereof; translating a phase shifted output of the VCO into an oscillatory force which is applied to one of the first and second masses to cause the mechanical device to respond; measuring the response of the mechanical device and generating a response signal representative thereof in frequency and amplitude; generating an error signal proportional to the phase difference between a signal representative of the output of the VCO and the measured response signal; adjusting the control signal to cause the oscillatory force applied to the one mass to sweep within a calculated frequency range rendering the amplitude of the response signal to approach and exceed a calculated threshold value; and when the calculated threshold is exceeded by the amplitude of the response signal, finely adjusting the control signal to the VCO until the value of the measured error signal is equal substantially to a calculated final error value, whereupon the frequency of the response signal is the resonant frequency of the mechanical device.