Abstract:
A magnetic field sensor, comprising a suspending mass block, a group of Y direction displacement sensors, a group of Z direction displacement sensors and a power supply; wherein the mass block, the Y direction displacement sensors and the Z direction displacement sensors respectively comprise a plurality of metal layers and a dielectric layer between two metal layers. In the mass block, a region corresponding to the Y direction displacement sensors and a region corresponding to the Z direction displacement sensors respectively comprise at least two metal layers connected by a via. The Y direction displacement sensors include two electrodes, each comprising at least two metal layers connected by a via; the Z direction displacement sensor includes two electrodes, each comprising at least two metal layers connected by a via; and the power supply provides a current flowing through the mass block selectively in X or Y direction.
Abstract:
Disclosed is a resonant magnetic field sensor, comprising a detector structure including a mass block and displacement detection electrodes; capacitance to voltage converter and amplifier to convert detection signals of the detection electrodes into voltage signals, as output signals of the magnetic field sensor; and a vibration driving circuit to provide the output signals to the mass block in the form of a current, to drive the mass block to vibrate. The vibration driving circuit may be a comparator.
Abstract:
Disclosed is a dual-functional resonant based magnetic field sensor that functions as magnetic field sensor and accelerometer, respectively, comprising a sensor structure including a mass block and motion sensor electrodes, capacitance to voltage converter and amplifier to convert sensing signals of the sensor electrodes into voltage, as output signals of the magnetic field sensor, a driving circuit to provide the output signals to the mass block in the form of current, to drive the mass block to vibrate, and a selection circuit to select measurement of magnetic field or acceleration. The driving circuit may be a comparator. The selection circuit may be replaced by a filter to select frequency bands of the output signals of the converter, for simultaneously providing signals representing magnetic field and acceleration, respectively.
Abstract:
The present invention relates to a liquid multilayer capacitive micro inclinometer, comprising at least two pairs of differential electrodes, each pair positioned in a same plane; at least one common electrode with a portion positioned in the plane of each pair of differential electrodes. The differential electrodes and the common electrode are provided in a sealed chamber, in which an immersing liquid is filled. The shape of the differential electrodes forms a sector of a circular plane. The inclinometer may further integrate a reading circuit. The present invention also discloses preparation method for the invented inclinometer.
Abstract:
A micro-electromechanical apparatus having a signal attenuation-proof function, and a manufacturing method and a signal attenuation-proof method thereof are disclosed. The micro-electromechanical apparatus includes a substrate, an insulation layer, and a sensing unit. The substrate has a doped region in which a majority of conductive carriers have the same polarity as an electronic signal. The insulation layer is located on the substrate, and the sensing unit is located above the insulation layer and forms the electronic signal when sensing a force.
Abstract:
A micro-electromechanical apparatus having a signal attenuation-proof function, and a manufacturing method and a signal attenuation-proof method thereof are disclosed. The micro-electromechanical apparatus includes a substrate, an insulation layer, and a sensing unit. The substrate has a doped region in which a majority of conductive carriers have the same polarity as an electronic signal. The insulation layer is located on the substrate, and the sensing unit is located above the insulation layer and forms the electronic signal when sensing a force.
Abstract:
The present invention relates to a liquid capacitive micro inclinometer, comprising a pair of differential electrodes and a common electrode, all formed in the same plane in a sealed chamber. Immersing liquid is filled in the sealed chamber. The shape of the differential electrodes forms a sector of a circular plane. The inclinometer may further integrate a reading circuit. The present invention also discloses preparation method for the invented inclinometer.
Abstract:
A magnetic field sensor, comprising a suspending mass block, a group of Y direction displacement sensors, a group of Z direction displacement sensors and a power supply; wherein the mass block, the Y direction displacement sensors and the Z direction displacement sensors respectively comprise a plurality of metal layers and a dielectric layer between two metal layers. In the mass block, a region corresponding to the Y direction displacement sensors and a region corresponding to the Z direction displacement sensors respectively comprise at least two metal layers connected by a via. The Y direction displacement sensors include two electrodes, each comprising at least two metal layers connected by a via; the Z direction displacement sensor includes two electrodes, each comprising at least two metal layers connected by a via; and the power supply provides a current flowing through the mass block selectively in X or Y direction.
Abstract:
The present invention relates to a liquid multilayer capacitive micro inclinometer, comprising at least two pairs of differential electrodes, each pair positioned in a same plane; at least one common electrode with a portion positioned in the plane of each pair of differential electrodes. The differential electrodes and the common electrode are provided in a sealed chamber, in which an immersing liquid is filled. The shape of the differential electrodes forms a sector of a circular plane. The inclinometer may further integrate a reading circuit. The present invention also discloses preparation method for the invented inclinometer.
Abstract:
The present invention relates to a liquid capacitive micro inclinometer, comprising a pair of differential electrodes and a common electrode, all formed in the same plane in a sealed chamber. Immersing liquid is filled in the sealed chamber. The shape of the differential electrodes forms a sector of a circular plane. The inclinometer may further integrate a reading circuit. The present invention also discloses preparation method for the invented inclinometer.