Abstract:
A control system includes a control apparatus functioning as a master, and plural slaves which are network-connected to the control apparatus. The control apparatus executes a first instruction to set specified identification information to a specified slave. In response to whether the specified identification information is successfully written, the control apparatus outputs information indicating whether a reboot of the specified slave is required.
Abstract:
Apparatuses, methods, and systems are disclosed for extracting EtherCAT datagrams from an EtherCAT frame. One method includes receiving an EtherCAT frame. The method includes determining a first EtherCAT datagram in the EtherCAT frame for a first device and a second EtherCAT datagram in the EtherCAT frame for a second device. The method includes extracting the first EtherCAT datagram from the EtherCAT frame to result in an extracted first EtherCAT datagram and the second EtherCAT datagram from the EtherCAT frame to result in an extracted second EtherCAT datagram. The method includes transmitting the extracted first EtherCAT datagram directly to the first device. The method includes transmitting the extracted second EtherCAT datagram directly to the second device.
Abstract:
The system generally includes a crosspoint switch in the local data collection system having multiple inputs and multiple outputs including a first input connected to the first sensor and a second input connected to the second sensor. The multiple outputs include a first and second output configured to be switchable between a condition in which the first output is configured to switch between delivery of the first sensor signal and the second sensor signal and a condition in which there is simultaneous delivery of the first sensor signal from the first output and the second sensor signal from the second output. Each of multiple inputs is configured to be individually assigned to any of the multiple outputs. Unassigned outputs are configured to be switched off producing a high-impedance state. The local data collection system is configured to manage data collection bands. The local data collection system includes a neural net expert system using intelligent management of the data collection bands.
Abstract:
The system generally includes a crosspoint switch in the local data collection system having multiple inputs and multiple outputs including a first input connected to the first sensor and a second input connected to the second sensor. The multiple outputs include a first and second output configured to be switchable between a condition in which the first output is configured to switch between delivery of the first sensor signal and the second sensor signal and a condition in which there is simultaneous delivery of the first sensor signal from the first output and the second sensor signal from the second output. Each of multiple inputs is configured to be individually assigned to any of the multiple outputs. Unassigned outputs are configured to be switched off producing a high-impedance state. The local data collection system is configured to manage data collection bands. The local data collection system includes a neural net expert system using intelligent management of the data collection bands.
Abstract:
The methods and systems for data collection, processing, and utilization of signals with a platform monitoring at least a first element in a first machine in an industrial environment generally include obtaining, automatically with a computing environment, at least a first sensor signal and a second sensor signal with a local data collection system that monitors at least the first machine and connecting a first input of a crosspoint switch of the local data collection system to a first sensor and a second input of the crosspoint switch to a second sensor in the local data collection system. The methods and systems also include switching between a condition in which a first output of the crosspoint switch alternates between delivery of at least the first sensor signal and the second sensor signal and a condition in which there is simultaneous delivery of the first sensor signal from the first output and the second sensor signal from a second output of the crosspoint switch and switching off unassigned outputs of the crosspoint switch into a high-impedance state. The local data collection system includes multiple multiplexing units and multiple data acquisition units receiving multiple data streams from multiple machines in the industrial environment.
Abstract:
Equipment monitoring employing time-triggered Ethernet communications is provided. Two or more sensor assemblies can be configured to transmit sensor signals representative of one or more operating parameters of a machine to a monitoring system over a token ring Ethernet network. The monitoring system can synchronize timing between the sensor assemblies and schedule timing of respective sensor signal transmissions to bound latency of the scheduled transmissions. Alternatively, or additionally, the monitoring system can include an Ethernet backplane configured to allow Ethernet communication between two or more processing cards coupled thereto. A switch in communication with the Ethernet backplane can schedule transmissions between the processing cards coupled to the Ethernet backplane to guarantee latency of the scheduled transmissions.
Abstract:
The present invention concerns a method for switching, by a local processing unit (1,2) of a flight control system of an aircraft, configured to control at least one local actuator, connected to at least one local sensor and connected via at least one link (3,4) to an opposite processing unit (2,1) configured to control at least one opposite actuator and be connected to at least one opposite sensor, said local processing unit (1,2) being further configured to be connected to backup communication means (13,14) enabling data exchanges between the local processing unit (1,2) and the opposite processing unit (2,1) in the case of failures of the links connecting same (3,4), said backup communication means comprising an array of sensors or actuators (13) and/or a secure onboard network for the avionics (14), comprising steps of: •—sending, to the opposite processing unit (2,1), acquisition data relative to the at least one local sensor and actuator data relative to the at least one local actuator, •—receiving, from the opposite processing unit (2,1), acquisition data relative to the at least one opposite sensor and actuator data relative to the at least one opposite actuator, •—receiving an item of opposite health data and determining an item of local health data, •—switching said local processing unit (1,2) from a first state to a second state chosen from an active state (15), a passive state (16) and a slave state (18), depending on the opposite health data received and the local health data determined.
Abstract:
A method is disclosed in which data is exchanged via a bus coupler (500) between a network (410) designed for transmitting Ethernet telegrams and a lower-level bus system (420), wherein the bus coupler (500) is connected via a first interface (520) to the network (410) and via a second interface (530) to the lower-level bus system (420), and wherein process data is read in and/or output through at least one bus node (610, 620, 630) of the lower-level bus system (420).Furthermore, a bus coupler (500), a bus node (610, 620, 630), and a control system (10) that are designed for execution of the method are disclosed.
Abstract:
There is provided a control system for controlling safety-critical processes that includes a fieldbus, a bus master for controlling a communication via the fieldbus, at least one signal unit for linking to at least one of the safety-critical processes, and a first control unit for controlling at least one of the safety-critical processes. The bus master and the at least one signal unit are connected to one another via the fieldbus to provide communication between at least one signal unit and the bus master. The at least one signal unit and the first control unit have safety-related devices. Failsafe communication is provided to control at least one of the safety-critical processes, and the first control unit is connected to the bus master independently of the fieldbus.
Abstract:
A process device is adapted to couple to a process control loop and communicate on the process control loop. Communication on the process control loop is effected in accordance with an internet protocol. A process communication device is also provided which couples to the process control loop, and an internet. The process communication device provides process control information received from the process control loop, to the internet. Conversely, the process communication device also provides information received from the internet to the process control loop.