摘要:
When a main processor issues a command to co-processor, a timeout value is included in the command. As the co-processor attempts to execute the command, it is determined whether the attempt is taking time beyond what is permitted by the timeout value. If the timeout is exceeded then responsive action is taken, such as the generation of a command timeout type failure message. The receipt of the command with the timeout value, and the consequent determination of a timeout condition for the command, may be determined by: the co-processor that receives the command, or a watchdog timer that is separate from the co-processor. Also, detection of co-processor hang and/or hung co-processor conditions during the time that a co-processor is executing a command for the main processor.
摘要:
An asynchronous processing system comprising an asynchronous scalar processor and an asynchronous vector processor coupled to the scalar processor. The asynchronous scalar processor is configured to perform processing functions on input data and to output instructions. The asynchronous vector processor is configured to perform processing functions in response to a very long instruction word (VLIW) received from the scalar processor. The VLIW comprises a first portion and a second portion, at least the first portion comprising a vector instruction.
摘要:
In a CPU of the combined CPU/APD architecture system, the CPU having multiple CPU cores, each core having a first machine specific register for receiving a physical page table/page directory base address, a second machine specific register for receiving a physical address pointing to a location controlled by an IOMMUv2 that is communicatively coupled to an APD, and microcode which when executed causes a write notification to be issued to the physical address contained in the second machine specific register; receiving in the first machine specific register of a CPU core, a physical page table/page directory base address, receiving in the second machine specific register of the CPU core, a physical address pointing to a location controlled by the IOMMUv2, determining that a control register of the CPU core has been updated, and responsive to the determination that the control register has been updated, executing microcode in the CPU core that causes a write notification to be issued to the physical address contained in the second machine specific register, wherein the physical address is able to receive writes that affect IOMMUv2 page table invalidations.
摘要:
Disclosed herein is an arithmetic decoding device including: an arithmetic decoding unit configured to decode coded data resulting from arithmetic coding on a basis of a context variable indicating a probability state and a most probable symbol; a plurality of arithmetic registers configured to supply the context variable to the arithmetic decoding unit and retain a result of operation by the arithmetic decoding unit; and a plurality of save registers configured to save contents retained in the arithmetic registers.
摘要:
When a main processor issues a command to co-processor, a timeout value is included in the command. As the co-processor attempts to execute the command, it is determined whether the attempt is taking time beyond what is permitted by the timeout value. If the timeout is exceeded then responsive action is taken, such as the generation of a command timeout type failure message. The receipt of the command with the timeout value, and the consequent determination of a timeout condition for the command, may be determined by: the co-processor that receives the command, or a watchdog timer that is separate from the co-processor. Also, detection of co-processor hang and/or hung co-processor conditions during the time that a co-processor is executing a command for the main processor.
摘要:
A clock-less asynchronous processing circuit or system having a plurality of pipelined processing stages utilizes self-clocked generators to tune the delay needed in each of the processing stages to complete the processing cycle. Because different processing stages may require different amounts of time to complete processing or may require different delays depending on the processing required in a particular stage, the self-clocked generators may be tuned to each stage's necessary delay(s) or may be programmably configured.
摘要:
A clock-less asynchronous processing circuit or system utilizes a self-clocked generator to adjust the processing delay (latency) needed/allowed to the processing cycle in the circuit/system. The timing of the self-clocked generator is dynamically adjustable depending on various parameters. These parameters may include processing instruction, opcode information, type of processing to be performed by the circuit/system, or overall desired processing performance. The latency may also be adjusted to change processing performance, including power consumption, speed etc.
摘要:
A clock-less asynchronous processing circuit or system is configured to operation in a plurality of modes. In an initialization mode (e.g., reset, initialization, boot up), a self-clocked generator associated with the asynchronous circuit is configured to generate an active complete signal (to latch output processed data) within a first period of time after receiving a trigger signal. In a normal mode, the self-clocked generator is configured to generate the active complete signal within a second period of time after receiving the trigger signal. In one embodiment, during the initialization mode, the asynchronous circuit latches the output slower than when in the normal mode.
摘要:
In a CPU, the CPU having multiple CPU cores, each core having a first machine specific register, a second machine specific register, and microcode which when executed causes a write notification to be issued to the physical address contained in the second machine specific register; receiving in the first machine specific register of a CPU core, a physical page table/page directory base address, receiving in the second machine specific register of the CPU core, a physical address pointing to a location controlled by the IOMMUv2, determining that a control register of the CPU core has been updated, and responsive to the determination that the control register has been updated, executing microcode in the CPU core that causes a write notification to be issued to the physical address contained in the second machine specific register, wherein the physical address is able to receive writes that affect IOMMUv2 page table invalidations.
摘要:
Systems and methods are provided for efficiently performing processing intensive operations, such as those involving large volumes of data, that enable accelerated processing time of these operations. In at least one embodiment, a system includes a graphics processor unit (GPU) including a memory and a plurality of cores. The plurality of cores perform a plurality of data analytics operations on a respectively allocated portion of a dataset, each of the plurality of cores using only the memory to store data input for each of the plurality of data analytics operations performed by the plurality of cores. The data storage for the plurality of data analytics operations performed by the plurality of cores is also provided solely by the memory.