摘要:
An electron-emitting device includes an electroconductive member and a lanthanum boride layer on the electroconductive member and further includes an oxide layer between the electroconductive member and the lanthanum boride layer. The oxide layer can contain a lanthanum element. The lanthanum boride layer can be overlaid with a lanthanum oxide layer.
摘要:
An electron-emitting device includes an electroconductive member and a lanthanum boride layer on the electroconductive member and further includes an oxide layer between the electroconductive member and the lanthanum boride layer. The oxide layer can contain a lanthanum element. The lanthanum boride layer can be overlaid with a lanthanum oxide layer.
摘要:
The present invention relates to afield emission cathode, comprising an at least partly electrically conductive base structure, and a plurality of electrically conductive micrometer sized sections spatially distributed at the base structure, wherein at least a portion of the plurality of micrometer sized sections each are provided with a plurality of electrically conductive nanostructures. Advantages of the invention include lower power consumption as well as an increase in light output of e.g. a field emission lighting arrangement comprising the field emission cathode.
摘要:
The following method is provided: a method of readily fabricating an electron-emitting device, coated with a low-work function material, having good electron-emitting properties with high reproducibility such that differences in electron-emitting properties between electron-emitting devices are reduced. Before a structure is coated with the low-work function material, a metal oxide layer is formed on the structure.
摘要:
The following method is provided: a method of readily fabricating an electron-emitting device, coated with a low-work function material, having good electron-emitting properties with high reproducibility such that differences in electron-emitting properties between electron-emitting devices are reduced. Before a structure is coated with the low-work function material, a metal oxide layer is formed on the structure.
摘要:
A method and an apparatus for manufacturing a high intensity electron emitting device using a boron lanthanum compound thin film are provided. An electron emitting base member region is opened in a second substrate disposed with an electron emitting base member, and is applied with a mask screening another region, thereby sputter-accumulating the sputtered particles of a low work function substance target. The second substrate sputter-accumulated and a first substrate disposed with phosphor are sealed by a sealing agent to fabricate a vacuum chamber. During the fabrication step, the first and second substrates are consistently maintained in a vacuum atmosphere or a reduced pressure atmosphere.
摘要:
The present invention relates to afield emission cathode, comprising an at least partly electrically conductive base structure, and a plurality of electrically conductive micrometer sized sections spatially distributed at the base structure, wherein at least a portion of the plurality of micrometer sized sections each are provided with a plurality of electrically conductive nanostructures. Advantages of the invention include lower power consumption as well as an increase in light output of e.g. a field emission lighting arrangement comprising the field emission cathode.
摘要:
An electron emission device includes a polycrystalline film of lanthanum boride, and a size of a crystallite which composes the polycrystalline film is equal to or more than 2.5 nm and equal to or less than 100 nm, preferably the film thickness of the polycrystalline film is equal to or less than 100 nm.
摘要:
A method and an apparatus for manufacturing a high intensity electron emitting device using a boron lanthanum compound thin film are provided. Sputtered particles of a low work function substance target are accumulated on a second substrate disposed an electron emitting base member. By using a mask for screening the electron emitting base member region opening other regions, the deposition of a low work function substance on the second substrate is etched, and after that, the second substrate and the first substrate disposed with the phosphor are sealed by a sealing agent to fabricate a vacuum chamber. During the fabrication step thereof, the first and second substrates are consistently maintained in a vacuum atmosphere or a reduced pressure.