摘要:
The invention provides a mass spectrometric method for analyzing a sample in a solution, including the steps of directing a flow of a solution containing sample compounds to be analyzed towards a supersonic nozzle having an input end and an output end; vaporizing the solution and sample prior to its expansion from the output end of said supersonic nozzle; allowing expansion of the vaporized sample and solution from said supersonic nozzle into a vacuum system, forming a supersonic molecular beam with vibrationally cold sample molecules; ionizing the vaporized sample compounds with electrons while contained as vibrationally cold molecules in said supersonic molecular beam; mass analyzing the ions formed from said sample compounds; detecting said ions formed from said sample compounds after mass analysis, and processing the data obtained from the resulting mass spectral information, for identifying and/or quantifying the chemical content of said sample. The invention also provides apparatus for analyzing a sample in a solution.
摘要:
A method of trapping ions using a quadrupole ion trap device includes applying quadrupole excitation to trapped precursor ions causing them to be driven into the ring electrode where they undergo surface induced dissociation. The resultant product ions are then trapped within the ion trap device.
摘要:
A means and method are disclosed whereby ions from an ion source can be selected and transferred to a time-of-flight mass analyzer via an arrangement of multipoles in such a way that fragmented ions may be generated by collision-induced dissociation or surface-induced dissociation. First, ions from the source are collisionally cooled by a first multipole. Second, the m/z range of the ions is then selected by a second multipole (preferably a quadrupole). Third, the selected ions are allowed to collide with a “collision surface” capable of producing fragment ions. Fourth, these fragment ions are collisionally cooled in a third multipole and delivered into a TOF mass analyzer for subsequent analysis of the fragmented ions.
摘要:
A means and method are disclosed whereby ions from an ion source can be selected and transferred to a time-of-flight mass analyzer via an arrangement of multipoles in such a way that fragmented ions may be generated by collision-induced dissociation or surface-induced dissociation. First, ions from the source are collisionally cooled by a first multipole. Second, the m/z range of the ions is then selected by a second multipole (preferably a quadrupole). Third, the selected ions are allowed to collide with a nullcollision surfacenull capable of producing fragment ions. Fourth, these fragment ions are collisionally cooled in a third multipole and delivered into a TOF mass analyzer for subsequent analysis of the fragmented ions.
摘要:
The present disclosure relates to a method of identifying components present in a lipoprotein. Methods provided include single particle mass spectrometry, such as charge detection mass spectrometry (CDMS). Distinct subpopulations that exist within lipoprotein classes are determined by correlating m/z and mass.
摘要:
The invention provides a system apparatus and methods for fragmenting various molecules. In particular, the invention may be employed for fragmenting biomolecules like peptides to determine sequence information. The invention provides a mass spectrometry system for photo-activated collision induced dissociation. The mass spectrometry system or device includes an ion source for producing ions, a photon source adjacent to the ion source for photo-activating ions produced by the ion source, an electrical element adjacent to the photon source for creating an electric field for accelerating ions produced by the ion source and photo-activated by the photon source; wherein ions are produced by the ion source, photo-activated by the photon source and accelerated into a surface to cause dissociation of the activated ions; and a detector downstream from the ion source for detecting the collision induced and dissociated ions.
摘要:
A method of trapping a ions using a quadrupole ion trap device includes applying quadrupole excitation to trapped precursor ions causing them to be driven into the ring electrode where they undergo surface induced dissociation. The resultant product ions are then trapped within the ion trap device.
摘要:
A Time-Of-Flight mass spectrometer is configured with a pulsing region and electronic controls that generate a potential well for ions in the pulsing region, due to the repelling effect of a high-frequency electric field that is created in the space immediately proximate to a surface, and an additional static electric field that accelerates ions toward the surface. Ions can be constrained and accumulated over time in the potential well prior to acceleration into the Time-Of-Flight tube for mass analysis. Ions can also be directed to collide with the surface with high energy to cause Surface Induced Dissociation (SID) fragmentation, or with low energy to effect collisional cooling, hence, better spatial focusing, prior to mass analysis. The apparatus and methods described in the invention result in refined control of ion fragmentation energy and improved Time-Of-Flight mass analysis performance.
摘要:
A Time-Of-Flight mass spectrometer (1) is configured with a pulsing region (10) and electronic controls to cause the directing of ions to a surface (12) in the Time-Of-Flight pulsing region (10). The population of ions resulting from the collecting of said ions on or near said surface (12) is subsequently accelerated into the Time-Of-Flight tube (17) for mass to charge analysis. Ions produced away from said surface (12) can be directed to the surface (12) with high or low surface collisional energies. Higher energy ion collisions with the surface (12) can result in Surface Induced Dissociation fragmentation and the resulting ion fragment population can be mass analyzed. Mass analysis can be performed prior to directing the ions to the surface allowing MS/MS Time-Of-Flight mass analysis with SID. Ion to surface low energy collisions or soft landings resulting in little or no ion fragmentation provide a means for spatially focusing ions on or near the surface prior to accelerating the surface collected ions into the Time-Of-Flight tube.
摘要:
A Time-Of-Flight mass spectrometer is configured with a pulsing region and electronic controls to cause the directing of ions to a surface in the Time-Of-Flight pulsing region. The population of ions resulting from the collecting of said ions on or near said surface is subsequently accelerated into the Time-Of-Flight tube for mass to charge analysis. Ions produced away from said surface located in the pulsing region of a Time-Of-Flight mass spectrometer can be directed to the surface with high or low surface collisional energies. Higher energy ion collisions with the surface can result in Surface Induced Dissociation fragmentation and the resulting ion fragment population can be accelerated into Time-Of-Flight tube where the ions are mass to charge analyzed. Ion mass to charge selection can occur prior to directing ions to the pulsing region surface allowing MS/MS Time-Of-Flight mass analysis with SID. Ion to surface low energy collisions or soft landings resulting in little or no ion fragmentation provide a means for spatially focusing ions on or near the surface prior to accelerating the surface collected ions into the Time-Of-Flight tube. The apparatus and methods described in the invention result in refined control of ion fragmentation energy and improved Time-Of-Flight mass to charge analysis performance.