摘要:
A method for manufacturing a transient voltage suppressing (TVS) array substantially following a manufacturing process for manufacturing a vertical semiconductor power device. The method includes a step of opening a plurality of isolation trenches in an epitaxial layer of a first conductivity type in a semiconductor substrate followed by applying a body mask for doping a body region having a second conductivity type between two of the isolation trenches. The method further includes a step of applying an source mask for implanting a plurality of doped regions of the first conductivity type constituting a plurality of diodes wherein the isolation trenches isolating and preventing parasitic PNP or NPN transistor due to a latch-up between the doped regions of different conductivity types.
摘要:
An I.sup.2 L semiconductor device in which a p-type buried layer is formed on an n.sup.+ type silicon substrate by diffusion of boron, an epitaxial n-type layer is grown on the p-type buried layer, a p.sup.+ type region is formed in a ring shape to surround the epitaxial n-type layer with the bottom of the p.sup.+ region reaching to the p-type buried layer, an n-type resistor layer is formed in the epitaxial n-type layer by diffusion of phosphorus, and connections for electrodes are formed by diffusion of n.sup.+ type impurities in such a manner that the connections make contact with the resistor layer.
摘要:
A sensor including a pick-up panel having photosensitive transistors whose emitters are connected to column conductors and whose collectors are connected to row conductors. The row conductors are connected to emitters of row selection transistors whose bases are connected to outputs of a row scanning generator and whose interconnected collectors are connected to an output circuit. The column conductors are directly connected to a column scanning generator. The influence of parasitic capacitances is eliminated by causing the output circuit to provide a constant voltage, by always impressing voltage on the column conductors and by switching over the row selection transistors in a signal blanking period.
摘要:
A non-gold doped multiple emitter transistor device having an additional lateral PNP transistor formed in the collector region and a debiasing resistance formed in the base region, these elements cooperating to suppress the inherent PNP beta to substrate characteristic and control the inverse Hfe of the device. The emitter of the additional transistor is connected to the base of the MET through a pinch-type debiasing resistor formed in a projection of the base region of the MET, and the base and collector of the additional transistor are shorted together and connected to the collector of the MET so as to provide a shunt path around the base-collector junction thereof.
摘要:
Device structures and design structures that include a silicon controlled rectifier, as well as fabrication methods for such device structures. A well is formed in the device layer of a silicon-on-insulator substrate. A silicon controlled rectifier is formed that includes an anode in the well. A deep trench capacitor is formed that includes a plate coupled with the well. The plate of the deep trench capacitor extends from the device layer through a buried insulator layer of the silicon-on-insulator substrate and into a handle wafer of the silicon-on-insulator substrate.
摘要:
Device structures and design structures that include a silicon controlled rectifier, as well as fabrication methods for such device structures. A well is formed in the device layer of a silicon-on-insulator substrate. A silicon controlled rectifier is formed that includes an anode in the well. A deep trench capacitor is formed that includes a plate coupled with the well. The plate of the deep trench capacitor extends from the device layer through a buried insulator layer of the silicon-on-insulator substrate and into a handle wafer of the silicon-on-insulator substrate.
摘要:
A method for manufacturing a transient voltage suppressing (TVS) array substantially following a manufacturing process for manufacturing a vertical semiconductor power device. The method includes a step of opening a plurality of isolation trenches in an epitaxial layer of a first conductivity type in a semiconductor substrate followed by applying a body mask for doping a body region having a second conductivity type between two of the isolation trenches. The method further includes a step of applying an source mask for implanting a plurality of doped regions of the first conductivity type constituting a plurality of diodes wherein the isolation trenches isolating and preventing parasitic PNP or NPN transistor due to a latch-up between the doped regions of different conductivity types.
摘要:
Device structures and design structures that include a silicon controlled rectifier, as well as fabrication methods for such device structures. A well is formed in the device layer of a silicon-on-insulator substrate. A silicon controlled rectifier is formed that includes an anode in the well. A deep trench capacitor is formed that includes a plate coupled with the well. The plate of the deep trench capacitor extends from the device layer through a buried insulator layer of the silicon-on-insulator substrate and into a handle wafer of the silicon-on-insulator substrate.
摘要:
There is provided a semiconductor device including a word line, a bit line, a power supply node, a memory element, and a capacitor. The memory element includes at least first and second regions that form a PN junction between the bit line and the power supply node, and a third region that forms a PN junction with the second region. The capacitor includes a first electrode provided independently from the second region of the memory element and electrically connected to the second region of the memory element, and a second electrode connected to the word line.
摘要:
In a semiconductor device having a junction type diode using a bipolar transistor and a process for producing the same, a ratio of a diode electric current to a leakage electric current is improved, and latch up resistance is improved without increasing the process. A p type semiconductor substrate, a collector buried region and an n type epitaxial layer are formed, a p type first impurity region is formed in the n type epitaxial layer, an n type second impurity region is formed in the first impurity region, an N+ sinker is formed, and a collector electrode is formed, with a common electrode being formed on the first and second impurity regions.