摘要:
An amplifier circuit outputs a control signal for controlling a control target circuit and receives input of a feedback signal from the control target circuit. The amplifier circuit and the control target circuit constitute a feedback loop that includes a plurality of poles. A semiconductor capacitive element is provided for phase compensation in the feedback loop. The amplifier circuit includes an output branch that includes a first transistor having a first current terminal from which the control signal is output and a second current terminal connected to a power supply potential, and a branch that is connected in parallel to the output branch and includes a cascode circuit. The cascode circuit includes a second transistor having third and fourth current terminals, and a third transistor having fifth and sixth current terminals. The fourth and fifth current terminals are connected to each other. The semiconductor capacitive element that obtains the Miller effect is connected between the control target circuit and the fourth and fifth current terminals.
摘要:
A regulated cascode circuit includes a first PMOS FET and a second PMOS FET connected in series between a first terminal that receives a first supply voltage and an output terminal, a first NMOS FET and a second NMOS FET connected in series between the output terminal and a second terminal that receives a second supply voltage, and a regulation circuit. The regulation circuit outputs a first control signal for stabilizing a voltage at a drain of the first PMOS FET to a gate of the second PMOS FET based on a voltage of the drain of the first PMOS FET and outputs a second control signal for stabilizing a voltage change in a source of the first NMOS FET to a gate of the first NMOS FET based on a voltage of the source of the first NMOS FET.
摘要:
A folded cascode amplifier having improved slew comprises an input differential transistor pair circuit, a cascode branch circuit coupled to the differential pair circuit, and a boost circuit for increasing branch current when the amplifier is in a slew condition. The additional current increases slew of the amplifier without negatively affecting amplifier characteristics.
摘要:
Provided is a complementary metal oxide semiconductor variable gain amplifier controlling a dB linear gain and a method of controlling the dB linear gain. The complimentary metal oxide semiconductor variable gain amplifier includes: first through fourth transistors differentially receiving first and second input voltages and amplifying the first and second input voltage using a predetermined gain; fifth and sixth transistors controlling a transconductance according to a control voltage to control the predetermined gain; and first and second resistors generating an output voltage having the predetermined gain according to an output current generated by the fifth and sixth transistors.
摘要:
Embodiments of the present invention disclose operational amplifiers which demonstrate good settling behavior with minimum over-shoot or ringing for improving settling behavior. The amplifiers include one or more amplification stages connected to form a symmetric structure. The amplification stage includes a boosting amplifier, a MOS transistor and a compensation capacitor. The MOS transistor can be an NMOS transistor and a PMOS transistor. Using this scheme pole-zero doublets are rearranged in a manner to improve the transient settling response.
摘要:
Provided is a transconductance amplifier capable of suppressing variation in the range of a linear relationship between an input voltage and an output current depending on the magnitude of a tuning voltage Vctrl, thereby adjusting transconductance over a wider range of operating input voltages. The transconductance amplifier is configured by a differential pair formed of MOS transistors (111, 112) having a common source, MOS transistors (113, 114), amplifiers (106, 107), a voltage generator circuit (100), and a differential-pair input voltage generator circuit (120). An input differential common voltage Vcm of all differential signals inputted to the differential pair is adjusted so that a difference between Vcm and Vctrl is equal to a constant, in accordance with a change in the tuning voltage Vctrl that controls the transconductance. This enables keeping constant the range in which the transconductance amplifier can achieve good linearity.
摘要:
A differential receiver circuit. In one embodiment, the circuit includes first and second input transistors, each having a first terminal coupled to a bias node (a first and second bias node, respectively), as well as first and second bias transistors, each having a first terminal coupled to the first and second bias nodes, respectively. The circuit further includes a first current source coupled to provide current to the first bias node and a second current source coupled to the second bias node. The differential receiver circuit is coupled to first and second, which receive first and second voltages, respectively. The first and second current sources provide current to the first and second bias nodes, respectively, such that the voltage present on the first and second bias nodes remains with approximately a threshold voltage of a midpoint between the voltages present on the first and second voltage nodes.
摘要:
Provided is a complementary metal oxide semiconductor variable gain amplifier controlling a dB linear gain and a method of controlling the dB linear gain. The complimentary metal oxide semiconductor variable gain amplifier includes: first through fourth transistors differentially receiving first and second input voltages and amplifying the first and second input voltage using a predetermined gain; fifth and sixth transistors controlling a transconductance according to a control voltage to control the predetermined gain; and first and second resistors generating an output voltage having the predetermined gain according to an output current generated by the fifth and sixth transistors.
摘要:
A high accuracy selectable gain instrumentation amplifier system which avoids amplifying signal distortions produced by gain selection switches includes a high gain amplifier having an input coupled to receive a system input signal and a feedback signal and an output generating an output signal proportional to the difference therebetween, a feedback network providing a plurality of gain selection feedback paths to the amplifier input, a first switching network coupling the amplifier output to a selected feedback path and a second switching network coupling the selected feedback path to the system output. The amplifier system may be implemented in either a differential or single ended ground referenced configuration.
摘要:
An amplifier circuit outputs a control signal for controlling a control target circuit and receives input of a feedback signal from the control target circuit. The amplifier circuit and the control target circuit constitute a feedback loop that includes a plurality of poles. A semiconductor capacitive element is provided for phase compensation in the feedback loop. The amplifier circuit includes an output branch that includes a first transistor having a first current terminal from which the control signal is output and a second current terminal connected to a power supply potential, and a branch that is connected in parallel to the output branch and includes a cascode circuit. The cascode circuit includes a second transistor having third and fourth current terminals, and a third transistor having fifth and sixth current terminals. The fourth and fifth current terminals are connected to each other. The semiconductor capacitive element that obtains the Miller effect is connected between the control target circuit and the fourth and fifth current terminals.