Abstract:
A method for controlling a heated process of a heater includes: obtaining a target temperature; identifying a first amount of electrical energy based on a prediction that the first amount of electrical energy is sized to cause a temperature of the heated process to reach the target temperature, wherein the first amount of electrical energy is indicative of one or more wattage, the first amount of electrical energy is indicative of a quantity of time that the one or more wattage is applied to the heater, and the prediction is based on an energy profile associated with the heater; and providing the one or more wattage to the heater for a portion of the quantity of time.
Abstract:
A multi-purpose detection circuit for object detection and vehicle position determination is described. For example, the circuit is configurable for detecting foreign metallic objects, living objects, and a vehicle or type of vehicle above an inductive wireless power transmitter. The circuit is also configurable for determining the vehicle's position relative to the inductive wireless power transmitter. An example apparatus includes a measurement circuit including a multiplexer, electrically connected to a plurality of inductive and capacitive sense circuits, for measuring one or more electrical characteristics in each of the inductive and capacitive sense circuits according to a predetermined time multiplexing scheme. The apparatus further includes a control and evaluation circuit for evaluating the measured electrical characteristics and determining at least one of a presence of a metallic object, a living object, a vehicle, or a type of vehicle, and a vehicle position based on changes in the measured electrical characteristics.
Abstract:
A photonic heater is provided. The photonic heater includes a current source and a transfer circuit. The transfer circuit connected to the current source. The photonic heater further includes a heating element. The heating element is connected to the transfer circuit. The transfer circuit is operable to regulate an amount of current being transferred from the current court to the heating element.
Abstract:
A method for controlling a temperature of a heating element can include: measuring a temperature of the heating element using a temperature sensor; estimating a temperature of the heating element based on a heat transfer model of the heating element; calculating a variation of the estimated temperature and a variation of the measured temperature; and determining whether a failure of the temperature sensor occurs based on the calculated variation of the estimated temperature and the calculated variation of the measured temperature.
Abstract:
An apparatus and a method for controlling a heating device in a motorized camera directing arrangement including a motor device is disclosed. The method comprising measuring a voltage over the motor device, measuring a current conducted at least to the motor device, measuring a temperature relating to the motorized camera directing arrangement, controlling power distributed to the heating device based on the measured temperature and on the measured current, and feeding power to the heating device independent of the measured temperature and the measured current in the event that the measuring of the voltage over the motor device indicates a voltage level higher than a predetermined threshold value.
Abstract:
A heater control device includes a current calculating unit (20) which calculates a third value of current based on a first value of current flowing through a first PTC element of a first PTC heater which is in an energized state and a second value of current estimated to flow through a second PTC element of a second PTC heater which is to be newly put into an energized state next, and a switching control unit (21) which maintains a non-energized state of the second PTC element of the second PTC heater until it is determined that the third value of current calculated by the current calculating unit (20) is less than a predetermined maximum allowable value of current and puts the second PTC element of the second PTC heater into an energized state when the third value of current is less than the predetermined maximum allowable value of current.
Abstract:
A system and method for controlling electrical heating of an element to maintain a constant electrical resistance, by adjusting electrical power supplied to such element according to an adaptive feedback control algorithm, in which all the parameters are (1) arbitrarily selected; (2) pre-determined by the physical properties of the controlled element; or (3) measured in real time. Unlike the conventional proportion-integral-derivative (PID) control mechanism, the system and method of the present invention do not require re-tuning of proportionality constants when used in connection with a different controlled element or under different operating conditions, and are therefore adaptive to changes in the controlled element and the operating conditions.
Abstract:
A controller adapted to control the temperature of a heating elements with a wide range of positive temperature coefficient of resistance, including very low values, using a sensor in line with the heating element. The controller is able to take account of non-constant mains power supplies and variation in the element resistance over time.
Abstract:
A temperature control apparatus includes a heater of which a temperature increases in response to receiving power, a power source supplying alternating current (AC) power to the heater, a temperature sensor sensing the temperature of the heater and outputting a measured temperature value, and a controller controlling the power supply to the heater so that the heater follows a set temperature profile, wherein the controller supplies the power to the heater for first one control period in a variable period consisting of a plurality number of times of control periods (on duty), and stops the power supply to the heater during remaining control periods until the variable period is finished (off duty).
Abstract:
A multi-purpose detection circuit for object detection and vehicle position determination is described. For example, the circuit is configurable for detecting foreign metallic objects, living objects, and a vehicle or type of vehicle above an inductive wireless power transmitter. The circuit is also configurable for determining the vehicle's position relative to the inductive wireless power transmitter. An example apparatus includes a measurement circuit including a multiplexer, electrically connected to a plurality of inductive and capacitive sense circuits, for measuring one or more electrical characteristics in each of the inductive and capacitive sense circuits according to a predetermined time multiplexing scheme. The apparatus further includes a control and evaluation circuit for evaluating the measured electrical characteristics and determining at least one of a presence of a metallic object, a living object, a vehicle, or a type of vehicle, and a vehicle position based on changes in the measured electrical characteristics.