Abstract:
A coated abrasive belt backing material woven from 100% high tenacity polyester staple yarns in a sateen weave is heat set and destretched to a dimensional stability warpwise of less than 6.5% elongation at 170 pounds per linear inch of width tensile, while maintaining its desired width during such heat setting and destretching, cloth finished, coated with maker, abrasive and size, cured and product finished to form endless belts having superior properties of strength, toughness, body retention, pliability and base adhesion.
Abstract:
An abrasive article includes a backing having a major surface, an adhesion promoting layer overlying the major surface of the backing, and a make layer directly contacting the adhesion promoting layer. The adhesion promoting layer has a thickness of at least about 10 microns and is formed of a polar thermoplastic material, a cross-linkable polymer, or blends thereof.
Abstract:
Disclosed is a method of applying particles to a coated backing. A first layer of particles is created over a second layer of particles on a support surface and the first layer of particles is different in at least one property from the second layer of particles. A coated backing is positioned above the first and second layer of particles. An electrostatic field is applied simultaneously to the first and second layer of particles such that the first layer of particles closer to the coated backing are preferentially attracted to the coated backing first before the second layer of particles.
Abstract:
Methods of making an abrasive article. Abrasive particles are loaded to a distribution tool including a plurality of walls defining a plurality of slots. Each slot is open to a lower side of the tool. The loaded particles are distributed from the distribution tool to a major face of a backing web below the lower side and moving relative to the tool. At least a majority of the particles distributed from the tool undergo an orientation sequence in which each particle first enters one of the slots. The particle then passes partially through the slot such that a first portion is beyond the lower side and in contact with the major face, and a second portion within the slot. The sequence then includes the particle remaining in simultaneous contact with one of the walls and the major face for a dwell period while the web moves relative to the tool.
Abstract:
Methods of making an abrasive article. Abrasive particles are loaded to a distribution tool including a plurality of walls defining a plurality of slots. Each slot is open to a lower side of the tool. The loaded particles are distributed from the distribution tool to a major face of a backing web below the lower side and moving relative to the tool. At least a majority of the particles distributed from the tool undergo an orientation sequence in which each particle first enters one of the slots. The particle then passes partially through the slot such that a first portion is beyond the lower side and in contact with the major face, and a second portion within the slot. The sequence then includes the particle remaining in simultaneous contact with one of the walls and the major face for a dwell period while the web moves relative to the tool.
Abstract:
Abrasive articles and associated methods are shown that include one or more camouflaging layers that can be applied to a portion of the abrasive article. The one or more camouflaging layers can be applied over the size coat layer as a discontinuous colored layer covering a portion of the size coat layer. In an example, the camouflaging layer can be applied as a repeating pattern of one or more colors on the abrasive article. In an example, the camouflaging layer can be applied randomly to the abrasive article. The discontinuous layer can have a color markedly different than a color of the size coat layer and can be used to mask or minimize an appearance of particle imperfections or voids on the abrasive article. The discontinuous layer can be applicable to coated and non-woven abrasive articles in the form of sheets, discs, belts, pads, or rolls.
Abstract:
Disclosed is a method of applying particles to a coated backing. A first layer of particles is created over a second layer of particles on a support surface and the first layer of particles is different in at least one property from the second layer of particles. A coated backing is positioned above the first and second layer of particles. An electrostatic field is applied simultaneously to the first and second layer of particles such that the first layer of particles closer to the coated backing are preferentially attracted to the coated backing first before the second layer of particles.