Abstract:
A cutting tool, preferably in the form of a scalpel, microtome or razor blade is fabricated from single crystal material such as aluminum oxide with a preferential etching process to produce a radius of curvature less than 100 Angstroms on the edge. Depending upon the etchant, the crystallographic orientation of the blank and the resulting different etch rates on blade surfaces, the preferential etching process not only sharpens a preformed edge but also, in one embodiment, produces an opposing edge which meets the sharpened edge at a point, thereby to produce a particularly efficient scalpel blade configuration having two cutting edges converging at a point for plunging and cutting. With respect to the sharpening of the cutting edge, consistent with all other blade forming requirements, the subject blade is made to a maximum sharpness by utilizing a maximum ratio of bevel plane etch rate to edge plane etch rate. This maximum ratio maximizes the edge sharpness when a steady state etching geometry has been achieved. In one embodiment, and for a given edge sharpness, blade drag is minimized by selecting the crystallographic orientation and etchant such that the etchant chemically polishes the bevels and maintains the planarity of the bevel planes. In order to achieve identical etching of the bevels meeting at the blade edge and thus maintain original blade geometry, the blank can be oriented such that the edge forming planes are crystallographically identical planes.
Abstract:
A castable, moldable, or extrudable magnesium-based alloy that includes one or more insoluble additives. The insoluble additives can be used to enhance the mechanical properties of the structure, such as ductility and/or tensile strength. The final structure can be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final structure as compared to the non-enhanced structure. The magnesium-based composite has improved thermal and mechanical properties by the modification of grain boundary properties through the addition of insoluble nanoparticles to the magnesium alloys. The magnesium-based composite can have a thermal conductivity that is greater than 180 W/m-K, and/or ductility exceeding 15-20% elongation to failure.
Abstract:
This invention relates to a solution and process for chemically resharpening smoothing, forming, and cutting tools such as files, jigsaw blades, hacksaw blades, coping saw blades, bandsaw blades, and the like. The solution contains preferred concentrations of phosphoric acid, anionic and nonionic surfactants including ethyl alcohol and distilled water. The tools are immersed in the solution for a period of 2 to 5 hours depending upon the wear to the tools, after which the tools are removed, wiped, and allowed to air dry to allow a rust resistant coating from the solution to adhere to the tools.
Abstract:
Apparatus for chemically etching a workpiece includes a chamber for receiving a process gas and having a pumping port for extracting exhaust gases, and a workpiece support located in the chamber upstream of the pumping port. The chamber further includes a sub-chamber located upstream of the pumping port and downstream of the workpiece support, and the sub-chamber includes a window and an excitation source, adjacent the window, for creating a plasma in a sample of the exhaust gases to create an optical emission which can be monitored through the window.