Abstract:
A method and system for tensioning a belt, the system including a tensioning measuring head, a controller, and an air impact gun. The tension measuring head includes a vibration sensor and a belt striker. The controller activates the belt striker and receives signals from the vibration sensor indicative of the vibrations set up in the belt being tensioned. The measured vibrations are indicative of the tension on the belt, and are used by the controller to deactivate the air impact gun when the belt tension is determined to be at a desired level.
Abstract:
An instrument is provided with several sensing elements to enable several parameters of a processed yarn to be measured or determined. In order to minimize the total sensing element/guide contact with the yarn within the complete process threadline, the yarn is guided through the instrument by contact only with the inlet and outlet guiding elements of the instrument and contact operative sensing elements. One particular instrument consists, in succession, of an interlace sensing device, a tension sensing device and an oil content sensing device. The electrical resistance of the yarn is measured between two pins of the oil content sensing device and in this case, the first pin is also a tension sensing pin of the instrument, and the second pin of the oil content sensing device is also the outlet guide of the instrument.
Abstract:
In a fiber splicing device, an adjustment apparatus for moving a first fiber-section perpendicular to its end face is designed such that it is composed of at least one piezo-actuator and a drive. After the splicing of the two fiber ends, the piezo-actuator is charged to a preset electrical voltage and the electrical voltage at the piezo-actuator is subsequently measured while the first carriage is moved away perpendicular to the fiber end face and is compared to the preset values. As a result thereof, the tensile stress acting on the fiber can be identified dependent on the movement of the first carriage, so that the drive can be arrested after a preset tensile testing stress has been reached.
Abstract:
An arrangement for examining a textile material section is provided, more particularly of toweling goods, by visual inspection by an examiner. In this respect, the examining arrangement has a laying area arranged in the field of vision of the examiner, in which the material section can be positioned so that it is laid flat for examination of the first side of the material section. In addition, the examining arrangement includes a turning device (2, 3), by which the material section (4), starting from the position for examining the first side (8) of the material section (4), can be reversed in such a manner that the material section (4) can be positioned so that it is laid flat in the laying area (6) for examination of the second side (10) of the material section (4).
Abstract:
Mounted within the measuring section (10) formed by two clamping devices (2, 4) are measuring rollers (8, 9) which deflect the test material (10). The deflection results in a force couple (P, P′) and a resultant force (R). The resultant force (R) is transferred into a load cell (3) via a link (6). This arrangement enables the clamping devices (2, 4) and the load cell (3) to be mounted separately. The measuring rollers (8, 9) are equipped with incremental transducers (19, 20) by means of which the clamp slippage (&Dgr;1) creeping out of the clamping faces of the clamping devices (2, 4) and the extension of the test material sections (10′, 10″) are measured.
Abstract:
A fiber property testing system for classing fiber samples based on properties of the fiber samples. Loading means receive unloaded cassettes and load the fiber samples into the unloaded cassettes to produce loaded cassettes. Testing means receive the loaded cassettes, remove fiber subsamples from the loaded cassettes, and perform property testing measurements on the fiber samples and the fiber subsamples. Unloading means unload the tested fiber samples from the loaded cassettes to produce the unloaded cassettes. Conveyance means receive the loaded cassettes from the loading means and deliver the loaded cassettes to the testing means, and receive the unloaded cassettes from the unloading means and deliver the unloaded cassettes to the loading means. Control means control delivery and receipt of the loaded cassettes and the unloaded cassettes, receive and correlate information generated during the property testing measurements, and class the fiber samples based on the information.
Abstract:
A pressure sensitive area sensor having a two-dimensional support structure which is made up essentially of flexible strips and of several pressure-sensitive switching elements which are distributed over the area of the supporting structure, with the switching elements being connected to each other by connecting means. The pressure-sensitive switching elements are supported, at least where the supporting structure is subjected to large three-dimensional deformations, by free-standing projections of the connecting strips.
Abstract:
To identify the need for replacement of stranded synthetic fiber ropes, preferably ropes of aramide fiber, a torsionally neutral rope construction of load-bearing fiber strands is obtained by having at least two layers of strands laid together in opposite directions so that the torsional forces in the layers of strands compensate each other. If the layers of the strands become weakened by unequal amounts due to wear or external influences, when the rope is under load and running operationally it begins to twist about its longitudinal axis. The twisting of the rope can be made visible by a colored mark or strip extending along the length of the rope to indicate twisting of the rope thereby providing visual identification of the need for replacement of the rope.
Abstract:
A method and sheet-like sensor for measuring stress distribution including a grid of members which change in resistance when subjected to strain, the members intersecting at internal nodes and intersecting at boundary nodes at the periphery of the grid defining a plurality of legs. An analyzer is electrically connected only to the boundary nodes and configured to calculate any change in resistance in all of the legs based solely on the measured resistance of the legs between the boundary nodes.
Abstract:
A method for measuring substrate bending stiffness and thereby basis weight on a real time basis. Provided is a corrugator having a plurality of parallel ribs, with one or more sheets of the substrate provided below the corrugator wherein a predetermined gap exists between a topmost sheet of the sheets and the corrugator. A vacuum is applied between the corrugator and the topmost sheet, wherein the vacuum is sufficiently large to raise the topmost sheet, thereby deflecting and bending it into a profile corresponding to the arrangement and size of the corrugator ribs and bending stiffness of the substrate. One or more sensors are provided for measuring the deflection of the topmost sheet. The vacuum, an air knife output and/or a fluffer output are then adjusted according to predetermined rules and the measured deflection.