Abstract:
Manipulators for handling micron-scale samples, methods for making probes for the manipulators, and methods for using the manipulators are provided. An exemplary manipulator includes a probe, a probe holder, and a mechanical positioner. The probe includes an electrically conductive surface, a proximal end and a distal end where the distal end has a truncated conical shape with a generally flat face, and a bore extending from the proximal end to the face. The probe holder engages the proximal end and includes an inlet in fluid communication with the bore and with a source of sub-ambient pressure. An exemplary microscopy inspection method includes forming a free-standing membrane, positioning the probe of the manipulator proximate to the membrane, drawing the membrane to the face by drawing a vacuum through the bore, placing the membrane on a sample support, and inspecting the membrane with a microscope.
Abstract:
A method for measuring substrate bending stiffness and thereby basis weight on a real time basis. Provided is a corrugator having a plurality of parallel ribs, with one or more sheets of the substrate provided below the corrugator wherein a predetermined gap exists between a topmost sheet of the sheets and the corrugator. A vacuum is applied between the corrugator and the topmost sheet, wherein the vacuum is sufficiently large to raise the topmost sheet, thereby deflecting and bending it into a profile corresponding to the arrangement and size of the corrugator ribs and bending stiffness of the substrate. One or more sensors are provided for measuring the deflection of the topmost sheet. The vacuum, an air knife output and/or a fluffer output are then adjusted according to predetermined rules and the measured deflection.
Abstract:
A method for measuring substrate bending stiffness and thereby basis weight on a real time basis. Provided is a corrugator having a plurality of parallel ribs, with one or more sheets of the substrate provided below the corrugator wherein a predetermined gap exists between a topmost sheet of the sheets and the corrugator. A vacuum is applied between the corrugator and the topmost sheet, wherein the vacuum is sufficiently large to raise the topmost sheet, thereby deflecting and bending it into a profile corresponding to the arrangement and size of the corrugator ribs and bending stiffness of the substrate. One or more sensors are provided for measuring the deflection of the topmost sheet. The vacuum, an air knife output and/or a fluffer output are then adjusted according to predetermined rules and the measured deflection.
Abstract:
A vacuum system and method for inspecting a workpiece that can include use the vacuum system, where the vacuum system can include a housing defining at least a portion of a vacuum chamber, a piston within the housing that oscillates to vary a volume of the vacuum chamber, a first valve and a second valve in fluid communication with the vacuum chamber, and a hood in fluid communication with the second valve and the vacuum chamber. The vacuum system can include high-speed valves that enable vacuum system cycling and thus vacuum pressure cycling at a rapid frequency.
Abstract:
The invention concerns a flexible substrate comprising an inner lead connected to an external connection terminal formed on a substrate, and a base film formed on the lead. The base film area above the substrate and closest to the terminal is thinner than the terminal. The invention also provides a semiconductor device comprising an inner lead connected to an external connection terminal formed on a substrate, and a base film formed on the lead. The base film area above the substrate and closest to the terminal is thinner than the terminal. The invention also provides for a manufacturing method a semiconductor device comprising a substrate, an external connection terminal, and an inner lead with a base film. Further, the invention provides a semiconductor device with a substrate with a chamfered corner between the connection and side faces. By the invention, connection of an inner lead or a flexible substrate is made easier.
Abstract:
A method and apparatus for measuring substrate bending stiffness and thereby basis weight on a real time basis. Provided is a corrugator having a plurality of parallel ribs, with one or more sheets of the substrate provided below the corrugator wherein a predetermined gap exists between a topmost sheet of the sheets and the corrugator. A vacuum is applied between the corrugator and the topmost sheet, wherein the vacuum is sufficiently large to raise the topmost sheet, thereby deflecting and bending it into a profile corresponding to the arrangement and size of the corrugator ribs and bending stiffness of the substrate. One or more sensors are provided for measuring the deflection of the topmost sheet. The vacuum, an air knife output and/or a fluffer output are then adjusted according to predetermined rules and the measured deflection.
Abstract:
A testing apparatus for a flexible screen includes a slide rail, a reel, and a clamping member. The reel is disposed at an end of the slide rail in the extension direction of the slide rail which the axial direction of the reel is perpendicular to. The reel has a hollow structure and is connected to a evacuating device through a gas path formed in the hollow structure to enable the evacuating device to vacuumize inside of the reel to fit the flexible screen and coil around the reel. The reel is configured to affix first end of flexible screen and rotate to coil the flexible screen. The clamping member is configured to clamp a second end of the flexible screen opposite to the first end. The reel is further configured to rotate to drive, through the flexible screen, the reel and the clamping member to slide towards each other along the slide rail.
Abstract:
A bulge tester (20) for determining residual stresses, and mechanical, thermal and other properties of a thin film (26) of material. The bulge tester includes a chuck (22) that supports the substrate (24) on which the film is deposited by stiction rather than through the use of mounting waxes, adhesives and mechanical clamping. The stiction inducing media (52) may be viscous grease, a flexible sheet of material such as a rubber, an elastomer, both or other materials. Bulge testing performed using the stiction-based chuck involves inducing stiction between the base (42) of the chuck and substrate of at least at least 1 kPascal (0.69 lb/in2), as determined using a corner peel test. Then pressurized fluid is delivered to the film to be tested, and materials properties of the film are determined as a function of pressure of the fluid and deflection of the film.
Abstract:
An apparatus and method for impact response testing of materials such as magnetic discs of a disc drive. The apparatus of the present invention supports a target disc in cooperative relationship with a sub-millimeter impact test ball such that the test ball can be dropped on selected portions of the target disc from selected heights above the target disc. The apparatus permits the method of observing the characteristics of a detent made in the target disc, by use of a high resolution surface profiler, and interpolating the observed characteristics to analytical standards which, for a given test ball size and drop height, indicate the dynamic hardness of the target disc at that test location. A vacuum is used to support the test ball above the disc, and a vacuum release valve is provided to negate the vacuum and release the test ball.