Abstract:
An hydroconverted effluent composition is provided, along with systems and methods for making such a composition. The hydroconverted effluent composition can have an unexpectedly high percentage of vacuum gas oil boiling range components while having a reduce or minimized amount of components boiling above 593° C. (1100° F.). In some aspects, based in part on the hydroprocessing used to form the hydroconverted effluent composition, the composition can include unexpectedly high contents of nitrogen. Still other unexpected features of the composition can include, but are not limited to, an unexpectedly high nitrogen content in the naphtha fraction; and an unexpected vacuum gas oil fraction including an unexpectedly high content of polynuclear aromatics, an unexpectedly high content of waxy, paraffinic compounds, and/or an unexpectedly high content of n-pentane asphaltenes
Abstract:
Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems are described that can use feedstock materials, such as cellulosic and/or lignocellulosic materials, to produce ethanol and/or butanol, e.g., by fermentation.
Abstract:
Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems are described that can use feedstock materials, such as cellulosic and/or lignocellulosic materials, to produce ethanol and/or butanol, e.g., by fermentation.
Abstract:
Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems are described that can use feedstock materials, such as cellulosic and/or lignocellulosic materials, to produce ethanol and/or butanol, e.g., by fermentation.
Abstract:
An integrated slurry hydroprocessing and steam pyrolosyis system for the production of olefins and aromatic petrochemicals from a crude oil feedstock is provided. Crude oil, a steam pyrolysis residual liquid fraction and slurry reside are combined and treated in a hydroprocessing zone in the presence of hydrogen under conditions effective to produce an effluent having an increased hydrogen content. The effluent is thermally cracked with steam under conditions effective to produce a mixed product stream and steam pyrolysis residual liquid fraction. The mixed product stream is separated and olefins and aromatics are recovered and hydrogen is purified and recycled.
Abstract:
Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems are described that can use feedstock materials, such as cellulosic and/or lignocellulosic materials, to produce ethanol and/or butanol, e.g., by fermentation.
Abstract:
An improved system and method for processing feedstocks in an ebullated-bed hydroprocessing reactor is provided in which hydrogen gas is dissolved in the fresh and recycled liquid feedstock by mixing and/or diffusion of an excess of hydrogen, followed by flashing of the undissolved hydrogen upstream of the reactor inlet, introduction of the feed containing dissolved hydrogen into the ebullated-bed hydroprocessing reactor whereby the dissolved hydrogen eliminates or minimizes the prior art problems of gas hold-up and reduced operational efficiency of the recycle pump due to the presence of excess gas in the recycle stream when hydrogen gas was introduced as a separate phase into the reactor.
Abstract:
The invention concerns a process for hydroconversion of a hydrocarbonaceous feedstock comprising: a preparation step of at least one catalyst in one or more preparation reactor upstream from a reaction section, wherein (i) at least one preparation reactor feeds one or more reactor of the reaction section, or (ii) preparation reactors are dedicated for catalysts fed to at least a hydroconversion reactor or at least a hydrotreatment reactor of the reaction section; a separation step of solids contained in the liquid effluents issued from the reaction section, a treatment step of residues issued from separation section, comprising a partial oxidation step wherein said residues are partially oxidized to produce carbon monoxide, hydrogen an a metal containing residue. Such process permits improving of products quality, operation of the separation section, recovering of catalytic metals contained in the feed and supplying hydrogen to the reaction section.
Abstract:
A process for upgrading heavy hydrocarbonaceous feedstocks in at least one hydroconversion reactor for hydroconversion of the heavy hydrocarbonaceous feedstocks and in at least one hydrotreatment reactor for hydrotreatment of the heavy hydrocarbonaceous feedstocks, comprising the preparation of two or more catalysts, each catalyst being prepared from one or more catalyst precursor in at least one specific preparation reactor, the catalyst precursor containing at least one transition metal selected from group IIA, IIIB, IVB, VB, VIB, VIIB, VIII, IB or IIB of the periodic table of elements, and each preparation reactor feeding one or more hydroconversion or hydrotreatment reactor, each catalyst contained in preparation reactors being dedicated to hydroconversion or hydrotreatment of the feedstocks.
Abstract:
Systems and methods are provided for processing a heavy oil feed, such as an atmospheric or vacuum resid, using a combination of solvent assisted hydroprocessing and slurry hydroconversion of a heavy oil feed. The systems and methods allow for conversion and desulfurization/denitrogenation of a feed to form fuels and gas oil (or lubricant base oil) boiling range fractions while reducing the portion of the teed that is exposed to the high severity conditions present in slurry hydroconversion.