Abstract:
The present invention relates to a powertrain control system (1) for a motor vehicle. The vehicle comprises an internal combustion engine (5) and an adjustable suspension system (9) operable in accordance with first and second ride height settings, said settings being associated with respective first and second vehicle ride heights. The powertrain control system (1) comprises a stop/start controller (11) for issuing an engine stop request signal and an inhibitor (15) for inhibiting operation of the stop/start controller (11) in dependence on a selected ride height setting.
Abstract:
A vehicle air suspension can be controlled between a Standard setting of ride height and a lower, Kneel, setting. Movement to or from the Kneel setting is frozen if a door is opened or if the footbrake is applied. Alteration to the Kneel setting is prevented except when the vehicle is stationary. The suspension reverts to the Standard ride height if the vehicle is driven off or the handbrake is released. Movement of the suspension to or from a lower or higher setting is carried out sequentially to prevent headlamp dazzle. If the vehicle becomes partly supported by direct contact between the chassis and the ground (belly-out) this is detected by monitoring signals to ride height control valves and by providing a controlled re-inflation and balancing of the air springs.
Abstract:
Die Erfindung betrifft ein Verfahren zur Niveauregulierung bei einem Kraftfahrzeug, wobei durch Ansteuerung von zumindest einem Aktuator ein vorbestimmter Fahrzeughöhenstand einstellbar ist. Erfindungsgemäß erfolgt die Ansteuerung des Aktuators in Abhängigkeit von einem ersten, mit dem elektrischen Zustand des elektrischen Bordnetzes korrelierenden, Betriebsparameter und in Abhängigkeit von einem zweiten, den Fahrzeughöhenstand repräsentierenden, Betriebsparameter.
Abstract:
The tilt warning system (1) is arranged to generate tilt information during the driving of a route to be followed on a road by a vehicle driven by a person. This tilt information relates to the possible tilting of the vehicle on a port of the route still to be driven. The system is provided with a location determining device (2) for determining the position of the vehicle, route determining means (6) for determining, by means of the position of the vehicle(4), the route information about the part of the route still to be driven, at least one state estimator (16) for generating the vehicle state information. Furthermore, the vehicle comprises a central processing unit (14) which processes the vehicle state information (18) and the route information in combination to gain the above tilt information.
Abstract:
A rollover prevention device and method detects an impending rollover situation for a vehicle (10) having a high center of gravity (cg). The system alerts the operator to potentially dangerous driving conditions and/or automatically slows the velocity of the vehicle (10) to prevent rollover. An electronic control unit for receives output signals from wheel velocity, engine revolution, and engine load sensors and then calculates lateral acceleration, wheel slip difference, and drive torque from the signals. A lateral acceleration limit is defined by plotting lateral acceleration, wheel slip difference and drive torque as a three dimensional surface.
Abstract:
The present invention field relates to a braking device of the tilting system of vehicles that have at least three wheels and can lean sideways by virtue of the presence a so-called wheel tilting system. The device is characterized in that it comprises an electronic control unit adapted to receive and process a plurality of signals coming from devices capable of detecting parameters related to the instantaneous dynamic behavior of the vehicle and to selectively actuate said braking means.
Abstract:
Die Erfindung betrifft ein Verfahren zur Beeinflussung des Wankverhaltens von Kraftfahrzeugen mit mindestens drei Rädern. Mit Hilfe des Verfahrens werden Fahrzeugaufbaubewegungen unter dem Einfluss von am Schwerpunkt angreifenden Querkräften reduziert. Für das Verfahren ist es möglich für jede Fahrzeugachse einen zweigeteilten Stabilisator zu verwenden, in dem ein hydraulisches Stellglied integriert ist, das die beiden Stabilisatorhälften gegeneinander tordieren kann. Das in den Stabilisator eingeleitete Drehmoment wird über die Stabilisatorschenkel an den jeweiligen Radträgen übertragen. Es können auch vom Stabilisator unabhängige Stellglieder verwendet werden. Mit diesem Drehmoment kann ein durch die Fahrzeugquerkraft verursachtes Wankmoment kompensiert werden. Mit der vorliegenden Erfindung wird ein Verfahren bereitgestellt, mit dem das Wankverhalten im Hinblick auf Genauigkeit und die Reaktionsgeschwindigkeit verbessert wird.
Abstract:
A method and system/apparatus implementing a non-model based Decentralized Feedforward Adaptive Algorithm (DFAA) for active vibration control of an actively-driven element, such as an Active Vibration Absorber (AVA) (24). The AVA (24) preferably includes an inertial tuning mass (42) and a voice coil assembly (46) and is contained in an active vibration control system (20) wherein the method and system/apparatus reduce vibration of a vibrating member (22) at an attachment point (26) by receiving an error signal from an error sensor (28) such as an accelerometer and a reference signal from a tachometer (32) or accelerometer (34), where the reference signal is correlated to, or indicative of the frequency content of, a primary vibration source (36) and calculating an updated output signal via an electronic controller (39) using the non-model based DFAA to dynamically drive the actively-driven element, such as AVA (24). The method and system/apparatus using DFAA is effective for reduction of both tonal and broadband vibration. The method approaches the performance of Filtered-x LMS control, yet is decentralized and does not require information regarding the plant.
Abstract:
A method and apparatus for adaptively damping relative motion between the wheels and the frame of a heavy duty truck having a frame suspended on wheels by a suspension system. An air spring is disposed between the frame and at least one of the wheels having a primary reservoir for holding air and a piston adapted to act upon the air in the reservoir to compress the air and thereby provide support for the frame. An auxiliary reservoir holds air and can be placed in fluid communication with the primary reservoir to increase an effective volume of air upon which the piston acts. A control valve selectively places the auxiliary reservoir in communication with the primary reservoir based on vehicle operating parameters. The control valve can be actuated mechanically by forces acting on the wheels or by a controller that controls the valve based on wheel torque and road roughness.