Abstract:
The teachings are directed to a medical device having a drug-retaining coating that at least substantially delays the initial elution of a drug for a time effective at forming a functional endothelium over a surface of the medical device.
Abstract:
An endoprosthesis includes an expandable tubular body defined by a plurality of struts. In some embodiments, the expandable tubular body includes a bioerodible metal that has at least a first surface region and a second surface region. The first and second surface regions can have different surface oxide compositions. In some embodiments, the first portion has a thermally altered microstructure and the second portion has a wrought microstructure. The thermally altered microstructure can be a cast microstructure comprising dendritic grains. The first portion forms at least a portion of an outer surface of the expandable tubular body. In some embodiments, the expandable tubular body includes iron or a bioerodible iron alloy and at least one surface of the expandable tubular body includes a substantially uniform coating of iron(III) oxide.
Abstract:
A generally spherical vascular remodeling device is permanently positionable at a junction of afferent and efferent vessels of a bifurcation having an aneurysm. After positioning the device at the junction to substantially conform the device to the shape of the junction, the device acts as a scaffolding to inhibit herniation of objects out of the aneurysm and permits perfusion to the efferent vessels. Positioning the device may include deployment and mechanical or electrolytic release from a catheter. Embolic material may be inserted in the aneurysm before or after positioning the device. The device may have a first end, a second end substantially opposite to the first end, and a plurality of polymer filaments extending between and coupled at the first end and the second end. Such devices may be football shaped, pumpkin shaped, or twisted. The device may include a plurality of polymer loops forming a generally spherical shape.
Abstract:
This invention relates to a tissue expander for use in medical, veterinary and dental applications. The tissue expander comprises a self-inflating polymer network and a biodegradable polymer having a non-degraded state and a degraded state which in the non- degraded state constrains the inflation of the self-inflating polymer network and in the degraded state allows inflation of the self-inflating polymer network. In a preferred embodiment, the self-inflating polymer network and the biodegradable polymer form an interpenetrating polymer network or a semi-interpenetrating polymer network. Alternatively or in addition, the self-inflating polymer network forms a core and the biodegradable polymer forms coating which partially or fully surrounds the core.
Abstract:
Embodiments include coatings for adherence of biomaterials to a tissue. Systems and methods for adapting such coated materials to vascular access closure are further proved.
Abstract:
Exemplary embodiments of the present invention provide adhesion barriers having anti-adhesion and tissue fixating properties. The adhesion barriers are formed of fatty acid based films. The fatty acid-based films may be formed from fatty acid-derived biomaterials. The films may be coated with, or may include, tissue fixating materials to create the adhesion barrier. The adhesion barriers are well tolerated by the body, have anti-inflammation properties, fixate, well to tissue, and have a residence time sufficient to prevent post- surgical adhesions.
Abstract:
A stent scaffold combined with amniotic tissue provides for a biocompatible stent that has improved biocompatibility and hemocompatibility. The amnion tissue can be variously modified or unmodified form of amnion tissue such as non-cryo amnion tissue, solubilized amnion tissue, amnion tissue fabric, chemically modified amnion tissue, amnion tissue treated with radiation, amnion tissue treated with heat, or a combination thereof. Materials such as polymer, placental tissue, pericardium tissue, small intestine submucosa can be used in combination with the amnion tissue. The amnion tissue can be attached to the inside, the outside, both inside and outside, or complete encapsulation of the stent scaffold. In some embodiments, at least part of the covering or lining comprises a plurality of layers of amnion tissue. The method of making the biocompatible stent and its delivery and deployment are also discussed.
Abstract:
Disclosed herein is a biodegradable prosthesis (10) that includes a first end, a second end, and an elongate tubular body with a lumen therethrough. The prosthesis (10) can have a first layer (201) comprising a set of flexible interbraided bioabsorbable filaments (14), and optionally a set of flexible interbraided metallic filaments (15). Also, the prosthesis (10) can have a second layer (200) comprising a porous thermoplastic material that can be either an outer layer or an inner layer relative to the first layer (201). The prosthesis (10) can include other features including branch apertures, folded portions, and attachment mechanisms for the first (201) and second (200) layers.
Abstract:
The present invention relates to a implant for implantation into a body of an animal, wherein the implant comprises material of inner core of drupes and/or palm tree fruits.
Abstract:
A medical implant includes a bioerodible portion that includes a bioerodible polymer and a bioerodible metal. The bioerodible polymer matrix degrades under physiological conditions to form acidic degradation products. The bioerodible metal degrades under physiological conditions to form basic degradation products. The acidic degradation products and the basic degradation products buffer at least a portion of the medical implant. In one aspect, the bioerodible portion includes a bioerodible polymer matrix and a bioerodible metal within the bioerodible polymer matrix. In another aspect, the medical implant can include a body, a plurality of discrete deposits of the bioerodible polymer on the body, and a plurality of discrete deposits of the bioerodible metal on the body.