Abstract:
A component for a gas turbine engine comprises an airfoil body formed of a plastic. A reinforcement portion has webs formed of a metallic material and extend into the airfoil. A gas turbine engine, and a method of forming a component for use in a gas turbine engine are also disclosed.
Abstract:
An article includes a ceramic-based substrate and a barrier layer on the ceramic-based substrate. The barrier layer includes a matrix of barium-magnesium alumino-silicate or SiO 2 , a dispersion of silicon oxycarbide particles in the matrix, and a dispersion of particles, of the other of barium-magnesium alumino-silicate or SiO 2 , in the matrix.
Abstract:
A liner panel is provided for use in a combustor of a gas turbine engine. The liner panel includes a major dilution passage having a lip and a first seal boss. The liner panel also includes a minor dilution passage having a second seal boss adjacent the first seal boss.
Abstract:
The present disclosure relates generally to the field of fan blade platforms for gas turbine engines. More specifically, the present disclosure relates to a compressed chopped fiber fan blade platform for a gas turbine engine.
Abstract:
An airfoil for a turbine engine includes pressure and suction sides that extend in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a relationship between a total chord length and a span position and corresponds to a curve that has an increasing total chord length from the 0% span position to a first peak. The first peak occurs in the range of 45-65% span position, and the curve either remains generally constant or has a decreasing total chord length from the first peak to the 100% span position. The total chord length is at the 0% span position in the range of 8.2-10.5 inches (20.8-26.7 cm).
Abstract:
An airfoil of a turbine engine includes pressure and suction sides that extend in a radial direction from a 0% span position to a 100% span position. The airfoil has a relationship between a stagger angle and span position that defines a curve with a stagger angle that is greater than 35° from 0% span to at least 50% span.
Abstract:
An airfoil for a turbine engine includes an airfoil that has pressure and suction sides that extend in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a curve that corresponds to a relationship between a trailing edge sweep angle and a span position. The trailing edge sweep angle is in a range of 10° to 20° in a range of 40-70% span position, and the trailing edge sweep angle is positive from 0% span to at least 95% span. The airfoil has a relationship between a leading edge dihedral and a span position. The leading edge dihedral is negative from the 0% span position to the 100% span position. A positive dihedral corresponds to suction side-leaning, and a negative dihedral corresponds to pressure side-leaning.
Abstract:
An airfoil for a turbine engine includes pressure and suction sides extending in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a relationship between an axial leading edge location and a span position that is at least a third order polynomial with a generally U-shaped curve having an initial negative slope followed by a positive slope. The positive slope leans aftward and the negative slope leans forward. The curve has a critical point in the range of 30-50% span position at which the curve changes from the negative slope to the positive slope. The curve is generally linear from 55% span to 75% span and has a positive slope that increases at a rate of about 0.0875 inch (2.22 mm) per 1% span, +/- 0.04 inch (1.01 mm) per 1% span.
Abstract:
An airfoil of a turbine engine includes, pressure and suction sides extending in a radial direction from a 0% span to a 100% span position. The airfoil has a relationship between a gap/chord ratio and span position that defines a curve with a gap/chord ratio of less than 0.80 from 80% span to 100% span.
Abstract:
A gas turbine engine comprises a core engine housing. A nacelle is positioned radially outwardly of the core engine housing. An outer bypass housing is positioned outwardly of the nacelle. There is at least one accessory to be cooled positioned in a chamber radially between the core engine housing and the nacelle. A manifold delivers cooling air into the chamber, and extends ng circumferentially about a central axis of the core engine. The nacelle has an asymmetric flow cross-section across a circumferential extent.