Abstract:
A microfluidic diagnostic chip may, in an example, include a number of microfluidic channels defined in a substrate each microfluidic channel fluidly coupled to at least one fluidic slot; the at least one fluidic slot to receive a number of fluids, and a number of gold sensors each gold sensor having a thickness of between 1500 and 5000 angstroms (Å).
Abstract:
A method of fabricating electrodes includes forming a first metallic film layer on an upper surface of a first material substrate, and attaching a first polymeric layer to the upper surface of the first material substrate to form a first opened microchannel. The method further includes forming a second metallic film layer on a portion of a lower surface of a second material substrate, and attaching a second polymeric layer to the lower surface of the second material substrate to form a second opened microchannel. The method also includes attaching the first opened microchannel to a bottom side of the membrane and the second opened microchannel to the top side of the membrane. The first metallic film layer and the second metallic film layer each constitute transparent electrodes and are positioned with the membrane therebetween.
Abstract:
In situ-generated microfluidic capture structures incorporating a solidified polymer network, methods of preparation and use, compositions and kits therefor are described. Microfluidic capture structures may be advantageously used for assays performed within the microfluidic environment, providing flexibility in assaying micro-objects such as biological cells. Assay reagents and analytes may be incorporated within the microfluidic capture structures.
Abstract:
An electroanalytical device includes a pin set comprising at least two conductive pins for use as working and counter electrodes, wherein the first and second pins are comprised of a head, a shaft and a piercing tip; and a hydrophobic or omniphobic paper substrate, wherein the substrate is shaped to provide at least one recess for holding a liquid, wherein the shafts of two conductive pins traverse the paper substrate to anchor the heads of the two conductive pins on the recess surface. An electroanalytical device can also include at least two conductive pins for use as working and counter electrodes, a thread, serially wound around the shafts of each of the two conductive pins; and a base into which the piercing tip of each of the pins is secured.
Abstract:
A cover (10) for use in a digital microfluidics system (16) for manipulating samples in liquid portions or droplets is provided. The digital microfluidics system (16) com- prises a first substrate (18) with an array of electrodes (24) and a central control unit (20) for controlling the selection and for providing a number of said electrodes with voltage for manipulating liquid portions or droplets by electrowetting. A working gap (30) with a gap height is located parallel to the array of electrodes (24) and in-between first and second hydrophobic surfaces (26,28) that face each other at least during operation of the digital microfluidics system (16). The cover (10) comprises on one side the second hydrophobic surface (28) and on another side at least one micro-container interface (32), which comprises at least one cone (34). The inner surface of the cone (34) is formed to provide a sealing form fit contact with an outer surface of an inserted micro-container nozzle (36), by which a liquid is transferrable through a fluidic access hole (38) formed into the cover (10) and interconnecting each cone (34) and the gap (30). The cover (10) may be part of a disposable cartridge (14) or may be provided separately.
Abstract:
A fluidic card assembly comprising a fluidic card housing (1) and a biochip (3) located in the fluidic card housing. The fluidic card housing (1) includes a chamber (2) with a base wall, into which at least one fluidic channel extends. The biochip (3) is at least partially located in the chamber. A seal (7) is provided for sealing the biochip in the chamber (2) when the biochip is urged into the chamber. The fluidic channel has a serpentine form. The seal may be laminated or laser welded to the opening of the chamber in order to provide a window for observing the biochip.
Abstract:
The present invention relates generally to a sample processing device, such as a microfluidic device, comprising a substrate, wherein the substrate comprises a plurality of channels configured to transport a fluid, and wherein the plurality of channels are substantially coated with lubricin, or a functional variant thereof. Also disclosed herein are methods of manufacturing such devices, methods of preventing fouling of a channel in a device using lubricin, or a functional variant thereof and methods of controlling the electrokinetic flow of an analyte through a channel that is substantially coated with lubricin, or a functional variant thereof. Also disclosed herein is chromatographic material for the electrophoretic and/or chromatographic separation of an analyte, wherein the chromatographic material is substantially coated with lubricin, or a functional variant thereof..
Abstract:
A three-dimensional microfluidic device is described, including: a plurality of porous, hydrophilic cellulosic layers each comprising one or more hydrophilic regions and/or hydrophilic channels embedded in the porous, hydrophilic cellulosic layer; wherein the hydrophilic channel is fluidically connected to the hydrophilic region; the hydrophilic regions comprise a sample deposition zone, one or more assay zones in fluidic communication with the sample deposition zone; and a buffer deposition zone; and the assay zone comprises one or more reagents embedded therein selected from the group consisting of antigens and antibodies; and a valve layer comprising a valve switchable from a first position where the buffer zone and the assay zone are not in fluidic communication, to a second position where the buffer zone and the assay zone are in fluidic communication.
Abstract:
Embodiments of present application are directed to microfluidic devices and particularly digital microfluidic devices that are specifically designed to prevent sample contamination during sample processing, methods of manufacturing the same, and methods to improve sample analysis process by preventing sample contamination.