Abstract:
Simulated anodized coating systems and methods are provided. The method can include preparing an exterior surface of a metallic electronic enclosure and applying a translucent powder coating to the prepared exterior surface of the metallic electronic enclosure. The method can also include curing the translucent powder coating to form a continuous, translucent, chromatic surface on the prepared exterior surface of the metallic electronic enclosure. The method can also include applying a transparent, matte, liquid coating over the cured translucent powder coating to provide a consistent matte, continuous, chromatic surface on the prepared exterior surface of the metallic electronic enclosure.
Abstract:
The invention provides materials and methods for forming coatings on substrates. The coatings are durable and resistant to damage from environmental, chemical, thermal, and/or radiative sources. In some embodiments, the coatings comprise bilayers of electrostatically charged materials. The bilayers are created by alternately applying solutions comprising water-soluble, electrostatically charged materials. Durability is imparted to the coatings by the formation of crosslinks that are formed within and between layers after deposition of the coatings
Abstract:
A method for manufacturing a plurality of nanostructures (101) on a substrate (102). The method comprises the steps of: depositing a bottom layer (103) on an upper surface of the substrate (102), the bottom layer (103) comprising grains having a first average grain size; depositing a catalyst layer (104) on an upper surface of the bottom layer (103), the catalyst layer (104) comprising grains having a second average grain size different from the first average grain size, thereby forming a stack of layers comprising the bottom layer (103) and the catalyst layer (104); heating the stack of layers to a temperature where nanostructures (101) can form; and providing a gas comprising a reactant such that the reactant comes into contact with the catalyst layer (104).
Abstract:
A method for rendering a substrate hydrophobic includes treating the substrate with an acyloxysilane. The treatment includes impregnating the substrate with an acyloxysilane and thereafter curing (hydrolyzing and condensing the acyloxysilane) to form a silicone resin. The method is particularly useful for rendering paper hydrophobic.
Abstract:
An ambient pressure Atomic Layer Deposition (ALD) technique to grow uniform silica layers onto organic substrates at low temperatures, including room temperature, is described. For example, tetramethoxysilane vapor is used alternately with ammonia vapor as a catalyst in an ambient environment.
Abstract:
The presently disclosed subject matter describes acid-derivatized perfluoropolyether (PFPE) materials and their use as coatings, sealants, and flexible fillers for devices, apparatuses, and structural parts for a variety of medical applications, and as coatings, sealants, flexible fillers, and structural parts for vessels, structures, and machinery exposed to a marine environment.
Abstract:
The invention relates to coating systems having one or more hydrophobic layers bonded to a substrate with a silane composition and methods of making and using the same. In an embodiment, the invention includes an article having a substrate, a base coating layer covalently bonded to the surface of the substrate and a hydrophobic polymer layer disposed on the base coating layer. In an embodiment, the invention includes a method for forming an article including applying a base layer coating solution onto a substrate to form a base layer, applying a hydrophobic polymer layer onto the base layer, and applying actinic energy to the substrate.
Abstract:
Verfahren zum Beschichten eines Substrates, bei dem das Substrat mit einem Beschichtungsmittel versehen wird, das nicht ausgehärtete oder vernetzte Beschichtungsmittel mit einer Folie in Kontakt gebracht wird, wobei auf die der Beschichtung zugewandten Seite der Folie Additive aufgebracht sind, die Additive auf die Beschichtung übergehen, danach das Beschichtungsmittel gehärtet oder vernetzt wird, und dann die Folie von der Beschichtungsoberfläche wieder entfernt wird.
Abstract:
A method of providing a layer including a metal or silicon or germanium and oxygen on a surface, the method consisting of or including: forming an adsorbed layer less than 12 monolayers thick on the surface by exposing it to a liquid or vapour consisting of or including metal-, silicon- or germanium-containing organic molecules, and treating this layer by exposure to a glow discharge in a gas consisting of or including oxygen, thereby converting said adsorbed layer to a layer including silicon (or germanium) and oxygen (10).