Abstract:
Process for the surface-modification of flyash and industrial applications thereof have been described in this invention, which involve the new surface-sensitization, the new surface-activation, and the subsequent Cu or Ag coating of the as-received flyash particles in the conventional electroless bath. These new surface-modification processes offer efficient and cost-effective alternatives for the conventional processes which modify the surface of flyash particles with the costlier Sn-Pd catalyst-system. The flyash processed with the new surface-modification processes is also suitable for more number of industrial applications relative to that processed with the costlier Sn-Pd catalyst- system. The as-received flyash particles, processed via new surface-modification processes, find the industrial applications such as the conductive filler for manufacturing the conducting polymers, paints, adhesives, sealers, and resins used for the EMI shielding of the electronic devices, in the lead-based composites used in the automobile industries, and as a catalyst to purify the industrial waste-water by decomposing longer chains of organic molecules into smaller ones.
Abstract:
The invention relates to a method for chemically modifying a polymer matrix through the thickness thereof, said polymer matrix being selected from among fluoropolymer matrices and aliphatic polymer matrices. The method includes at least one step consisting in irradiating the matrix with UV light having a wavelength of less than 300 nm in order to generate zones in the thickness of the matrix that have: short polymer chains formed by scission of the existing chains during the passage of the UV rays, and free radicals known as "activated zones". The invention also relates to the polymer matrix that can be chemically modified using one such method.
Abstract:
La présente invention concerne un procédé pour modifier chimiquement, dans son épaisseur, une matrice polymérique choisie parmi les matrices en polymères fluorés et les matrices en polymères aliphatiques, ledit procédé comprenant au moins une étape consistant à irradier ladite matrice par une lumière UV de longueur d'onde inférieure à 300 nm pour générer, dans l'épaisseur de ladite matrice, des zones présentant des chaînes courtes de polymères, formées par scission des chaînes existantes lors du passage du rayonnement UV et présentant des radicaux libres ci- après désignées « zones activées ». La présente invention concerne également la matrice polymérique susceptible d'être modifiée chimiquement par un tel procédé.
Abstract:
The invention relates to a method for preparing a metallised substrate, comprising the following steps consisting in: grafting a polymer-type compound to the substrate, said compound optionally having a group capable of chelating at least one metal ion; bringing the aforementioned compound, which is capable of chelating at least one metal ion, into contact with at least one metal ion, exposing said polymer-type compound to conditions that allow the reduction of the chelated metal ion(s) and repeating the chelation/reduction steps until a metallised substrate is obtained. The invention also relates to the resulting substrates and to the uses thereof.
Abstract:
A method for reacting thin films on a low-temperature substrate within a reactive atmosphere is disclosed. The thin film contains a reducible metal oxide, and the reactive atmosphere contains a reducing gas such as hydrogen or methane. The low temperature substrate can be polymer, plastic or paper. Multiple light pulses from a high intensity strobe system are used to reduce the metal oxide to metal and to sinter the metal if applicable.
Abstract:
La présente invention a pour objet un procédé de métallisation de la surface d'un substrat par voie non électrolytique et par projection d'une ou plusieurs solutions oxydo-réductrices qui soit industriel, automatisable propre, multi-substrat, optimum en adhérence et en aspect décoratif. Pour ce faire le procédé met en œuvre les étapes suivantes : a. traitement physique ou chimique de diminution de la tension de surface du substrat avant métallisation, b. métallisation non électrolytique de la surface du substrat traitée à l'étape a., par projection d'une ou plusieurs solutions oxydo-réductrices sous forme d'aérosol(s), c. réalisation d'une couche de finition sur la surface métallisée. Les dispositifs compacts pour la mise en œuvre de ce procédé est un autre objet de l'invention, ainsi que les produits obtenus, à savoir notamment : les flacons verre creux notamment à usage cosmétique, les pièces d'automobile, les pièces pour la domotique ou pour l'aéronautique et les pièces d'électronique telle une piste conductrice, une antenne d'étiquette radiofréquence ou un revêtement pour un blindage électromagnétique.
Abstract:
Described herein is a coating formulation for non-platable grade substrate prior to undergoing an electroless metal plating process. Said coating formulation comprises of a mixture of multifunctional based monomer and diphenylmetane- 4, 4-diisocyanate (MDI), said multifunctional based monomer has allyl group or alkyl group or vinyl group or ether group or ester group or methacrylate group or acrylate group or phthalate group or combination thereof but does not include multifunctional monomer having hydroxyl group. According to the present invention, the ratio of said multifunctional based monomer is less than or equal (
Abstract:
This invention pertains to methods and systems for fabricating semiconductor devices. One aspect of the present invention is a method of depositing a gapfill copper layer onto barrier layer for semiconductor device metallization. In one embodiment, the method includes forming the barrier layer on a surface of a substrate and subjecting the barrier layer to a process condition so as to form a removable passivated surface on the barrier layer. The method further includes removing the passivated surface from the barrier layer and depositing the gapfill copper layer onto the barrier layer. Another aspect of the present invention is an integrated system for depositing a copper layer onto a barrier layer for semiconductor device metallization. In one embodiment, the integrated system comprises at least one process module configured for barrier layer deposition and passivated surface formation and at least one other process module configured for passivated surface removal and deposition of copper onto the barrier layer. The system further includes at least one transfer module coupled so that the substrate can be transferred between the modules substantially without exposure to an oxide-forming environment.
Abstract:
The present invention provides a method for forming a surface graft, comprising the process of applying energy to the surface of a substrate containing polyimide having a polymerization initiating moiety in the skeleton thereof, to generate active points on the surface of the substrate and to generate a graft polymer that is directly bonded to the surface of the substrate starting from the active points and that has a polar group, and a surface graft material obtained thereby. The present invention also provides a method for forming a conductive film, comprising the processes of applying energy to the surface of a substrate containing polyimide having a polymerization initiating moiety in the skeleton thereof, to generate active points on the surface of the substrate and to generate a graft polymer that is directly bonded to the surface of the substrate starting from the active points and that has a polar group, and causing a conductive material to adhere to the graft polymer, and a conductive material obtained thereby.