摘要:
A method of making a lithium ion battery electrode material, comprises incorporating lithium into a nano-structured carbon material formed by :- i) providing a porous carbon material having porosity; ii) impregnating a metallic material capable of catalyzing carbon nano structure growth within the porosity of the porous carbon material of step i) to provide an impregnated porous carbon material; or providing an impregnated porous carbon material produced by such an impregnating step; iii) heating the impregnated porous carbon material of step ii) to a temperature sufficient to promote carbon nano structure growth within the porosity of the carbon material to provide a nano-structured carbon material.
摘要:
To provide a composite material suitable for use as an electrode of an electricity storage device, particularly for a lithium or lithium-ion secondary battery, an electrode active material constituted by the composite material, an electrode containing the active material, and an electricity storage device including the electrode. Using a carbon surface-coated silicon-containing carbon-based composite material as an electrode active material, the composite material obtained by: forming a cured product by crosslinking (A) a crosslinkable group-containing organic compound, and (B) a silicon-containing compound capable of crosslinking the crosslinkable group-containing organic compound; and baking a mixture of the cured product and (C) a carbonaceous matter.
摘要:
誘電体層がより一層薄層化されても、高温負荷試験の寿命特性の優れた積層セラミックコンデンサを提供する。 積層セラミックコンデンサ1の誘電体層2を構成する誘電体セラミックとして、一般式(Ba 1-x-y Ca x Re y )(Ti 1-z M z )O 3 (但し、ReはLa、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu及びYの中から選択された少なくとも一種以上の元素、MはMg、Mn、Al、Cr及びZnの中から選択された少なくとも一種以上の元素)で表されると共に、0≦x≦0.2、0.002≦y≦0.1、0.001≦z≦0.05の範囲である化合物を主成分として含むものを用いる。この誘電体セラミックは、結晶粒子の平均粒径が20nm以上かつ150nm以下である。
摘要翻译:提供一种多层陶瓷电容器,即使在电介质层的厚度进一步降低的情况下,也能够在高温负荷试验中具有优异的寿命特性。 作为主要成分的以下通式表示的化合物(Ba1-x-yCaxRey)(Ti1-zMz)O3(其中,Re表示选自La,Ce, Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu和Y; M表示选自Mg,Mn,Al,Cr和Zn中的至少一种元素),满足0 = x = 0.2,0.002 = y = 0.1和0.001 = z = 0.05用作构成多层陶瓷电容器(1)的电介质层(2)的电介质陶瓷。 该介电陶瓷的平均结晶粒径为20〜150nm(含)。
摘要:
A method of forming a polycrystalline diamond comprises derivatizing a nanodiamond to form functional groups, and combining the derivatized nanodiamond with a microdiamond having an average particle size greater than that of the derivatized nanodiamond, and a metal solvent-catalyst. A polycrystalline diamond compact is prepared by adhering the polycrystalline diamond to a support, and an article such as a cutting tool may be prepared from the polycrystalline diamond compact.
摘要:
Verfahren zur Herstellung eines Zirkondioxid-Aluminiumoxid-Kompositpulvers, welches a) 60 bis 95 Gew.-% Zirkondioxid und 5 bis 40 Gew.-% Aluminiumoxid enthält; und b) dessen Kristallitgröße, nach einer thermischen Behandlung bei 1500°C, 50 bis 50 von 50 bis
摘要:
A substantially homogeneous particle mixture is disclosed. The mixture includes a plurality of derivatized nanodiamond particles comprising a plurality of first functional groups. The mixture also includes a plurality of microdiamond particles, wherein the derivatized nanodiamond particles and microdiamond particles comprise a substantially homogeneous particle mixture. The mixture may also include a plurality of third particles comprising nanoparticles not identical to the derivatized nanodiamond particles, or a plurality of microparticles not identical to the microdiamond particles, or a combination thereof, and the derivatized nanodiamond particles, derivatized microdiamond particles and third particles comprise the substantially homogeneous particle mixture.
摘要:
무소결 MIM 커패시터(Metal-Insulator-Metal Capacitor) 및 그 제조 방법에 대하여 개시한다. 본 발명에 따른 MIM 커패시터 제조 방법은 하부 금속-절연체-상부 금속을 제조하되, 상기 절연체(Insulator)는, 스몰 파우더(small powder)와 상기 스몰 파우더보다 더 큰 평균 입경을 갖는 라지 파우더(large powder)를 포함하는 고유전성 세라믹 파우더, 고분자 수지 및 용매를 포함하는 세라믹-고분자 조성물을 마련하는 단계; 상기 세라믹-고분자 조성물을 상기 하부 금속 위에 도포하여 세라믹-고분자 막을 형성하는 단계; 및 상기 형성된 세라믹-고분자 막 내의 고분자 수지를 경화시키는 단계를 포함하여, 무소결(non-sintering) 방식으로 형성되는 것을 특징으로 한다.
摘要:
The invention relates to a method for obtaining ceramic compounds and to the resulting material, comprising the following steps: using as a starting compound an LAS component having composition LixAlySizOw, wherein x varies between 0.8 and 1.2, y varies between 0.8 and 1.2, z varies between 0.8 and 2 and w varies between 4 and 6; mixing the LAS component with SiC nanoparticles, thereby obtaining a stable homogeneous suspension; drying the resulting suspension; shaping the material obtained; and, finally, sintering the material obtained in the previous step. The resulting material has a density greater than 98% of theoretical density and can be used in the aerospace industry, microelectronics and precision optics.