Abstract:
The present invention provides methods for measuring the absolute concentration of a biomolecule of interest in a subject. Such biomolecules may be implicated in one or more neurological and neurodegenerative diseases or disorders. Also provided is a method for determining whether a therapeutic agent affects the in vivo metabolism of a central nervous system derived biomolecule. Also provided are kits for performing the methods of the invention.
Abstract:
The invention relates to a method for detecting at least one nucleic acid variation based on the ratio of corrected signal intensities of at least two differentially labelled probes capable of detecting the nucleic acid variation. The invention also relates to an apparatus for performing the method.
Abstract:
A method of preparing a species-specific phosphorylation site peptide array for a target organism comprising: a) selecting a plurality of known non-target organism (NTO) phosphorylation site sequences and cognate known NTO phosphorylation polypeptide sequences from one or more NTO, each of the known NTO phosphorylation site sequences comprising at least 5 residues and less than 30 residues; b) identifying a matching target organism (TO) phosphorylation site sequence and cognate TO phosphorylation polypeptide sequence for one or more of the known NTO phosphorylation site sequences; c) determining the matching TO phosphorylation site sequences that correspond to orthologue polypeptides of the cognate known NTO phosphorylation polypeptide sequences; d) selecting the matching TO phosphorylation site sequences determined to correspond to orthologue polypeptides for inclusion on the array; wherein the matching TO phosphorylation site sequences that correspond to orthologue polypeptides are determined by calculating, for each matching phosphorylation site sequence identified in b), a similarity value between the TO phosphorylation polypeptide sequence corresponding to the TO phosphorylation site sequence and a TO polypeptide sequence matching the cognate known NTO polypeptide sequence.
Abstract:
Indexing gene expression data for comparing gene signatures includes assigning one of a plurality of fold change-based grading scores to each of a number of genes in a probe gene signature. The fold change-based grading scores reflect relative expression of one of the number of genes in the probe gene signature. Each of the number of genes in the probe gene signature assigned a particular grading score is weighted by the particular grading score. A ratio of each weighted number of genes in the probe gene signature assigned a particular grading score to a total number of genes in the probe gene signature is determined. Then, ratios of each weighted number of genes in the probe gene signature assigned each particular grading score to the total number of genes in the probe gene signature are summed to generate an index of gene expression.
Abstract:
The present application mainly relates to specific methods for inferring activity of one or more cellular signaling pathway(s) in tissue of a medical subject based at least on the expression level(s) of one or more target gene(s) of the cellular signaling pathway(s) measured in an extracted sample of the tissue of the medical subject, an apparatus comprising a digital compressor configured to perform such methods and a non- transitory storage medium storing instructions that are executable by a digital processing device to perform such methods.
Abstract:
Embodiments of the invention are directed to methods of diagnosing eosinophilic esophagitis (EoE), or remission therefrom in a subject, wherein the methods include applying a sample from the subject to a diagnostic panel that contains selected markers for EoE, analyzing to obtain relatedness information relative to an EoE cohort and making a determination as to the EoE status of the subject, wherein an analysis indicating grouping with an EoE cohort or a quantitative score similar to that of an EoE cohort are indicative of EoE in the subject. Embodiments of the invention are also directed to methods of monitoring the pathological development or medical prognosis of EoE in a subject.
Abstract:
A method of stratifying a set of disease-exhibiting patients prior to clinical trial of a target therapy begins by using a molecular footprint derived from a knowledgebase and other patient data to identify genes that are differentially expressed in a direction consistent with increase in the target activity. Therapeutic target "signaling strength" in individual patients of the set is then assessed using the genes identified and a strength algorithm. Based on their therapeutic target signaling strength, the set of disease- exhibiting patients are then stratified along a continuum. One or more gene expressions or other biomarkers may be specified for use in categorizing other disease-exhibiting patient populations. Alternative therapeutic targets are analyzed with respect to the likely non-responders, as evidenced by their differential signaling strength.
Abstract:
The present invention provides methods for predicting whether a subject will develop a disease capable of affecting cognitive function. More specifically, the present invention relates to the predictive detection of neurological diseases in a subject. The methods and systems provided enable a quantitative assessment and theoretical predictions of neocortical amyloid loading or amyloid beta levels based on the measurement of biomarkers in biological fluids that will provide an indication of whether a subject is likely to develop a neurological disease, such as Alzheimer's disease (AD).
Abstract:
Compositions, methods and kits are disclosed for high-sensitivity counting of individual molecules by stochastic labeling of a identical molecules in mixtures of molecules by attachment of a unique label-tags from a diverse pool of label tags to confer uniqueness to otherwise identical or indistinguishable events. Individual occurrences of target molecules randomly choose from a non- depleting reservoir of diverse label-tags. Labeled molecules may be detected by hybridization or sequencing based methods. Molecules that would otherwise be identical in information content are labeled to create a separately detectable product that can be distinctly detected. The disclosed stochastic transformation methods reduce the problem of counting molecules from one of locating and identifying identical molecules to a series of binary digital questions detecting whether preprogrammed label-tags are present. The methods may be used, for example, to count a given species of molecule within a sample.