摘要:
Apparatus for applying a treatment (216) to at least one tissue of a subject is described, the apparatus comprising a transmitting unit (210) configured to transmit a wireless power signal (214), a first implant (202a), and a second implant (202b), each of the implants being configured to receive the power signal and to apply the treatment asynchronously to each other, in response to the power signal. Other embodiments are also described.
摘要:
A method and apparatus for treating a condition associated with impaired blood pressure and/or heart rate in a subject comprising applying an electrical treatment signal, wherein the electrical treatment signal is selected to at least partially block nerve impulses, or in some embodiments, to augment nerve impulses. In embodiments, the apparatus provides a first therapy program to provide a downregulating signal to one or more nerves including renal artery, renal nerve, vagus nerve, celiac plexus, a splanchnic nerve, cardiac sympathetic nerves, spinal nerves originating between T10 to L5. In embodiments, the apparatus provides a third therapy program to provide an upregulating signal to one or more nerves including a glossopharyngeal nerve and/ or a tissue containing baroreceptors.
摘要:
A device is disclosed that includes an external unit configured to communicate with an implant unit beneath the skin of a subject and an indicator associated with the external unit. The indicator is configured to produce an indicator signal when the external unit is within a predetermined range of the implant unit. In addition, the indicator may be configured to vary the indicator signal according to a distance between the external unit and the implant unit. Furthermore, a method of locating an external unit with respect to an implant unit is disclosed that includes detecting a distance between the external unit and the implanted unit located beneath the skin of a subject, producing an indicator signal when the external unit is within a predetermined range of the implant unit, and varying the indicator signal as a function of a distance between the external unit and the implant unit.
摘要:
Medical devices and contact assemblies for electrical connections between medical device components are disclosed herein. A medical device in accordance with a particular embodiment includes a patient implantable element having a receiving cavity and at least one contact assembly positioned in the receiving cavity. The contact assembly can include a housing having an annular shape with an inner surface defining at least in part an opening. The contact assembly can further include a contact disposed at least partially within the opening and having a plurality of leaf spring portions.
摘要:
Communication and charging assemblies for medical devices are disclosed herein. A communication and charging assembly in accordance with a particular embodiment includes a support element, with a communication antenna and a charging coil coupled to the support element. The charging coil can include wire loops having a plurality of wires and the support element can include a mounting surface shaped to match the charging coil and the communication antenna. In one embodiment, the communication and charging assembly are mounted in a header of an implantable signal generator.
摘要:
An improved external charger for an implantable medical device is disclosed in which charging is at least partially controlled based on a determined position of the external charger, which position may be indicative of the pressure between the external charger and a patient's tissue. The improved external charger includes one or more position determination elements, e.g., an accelerometer or gyrometer, and control circuitry for controlling the external device in accordance with the determined position. The determined position of the external charger can be used to control charging, for example, by suspending charging, by adjusting the intensity of charging, by adjusting a maximum set point temperature for the external charger, or issuing an alert via a suitable user interface. By so controlling the external charger on the basis of the determined position, the external charger is less likely to create potentially problematic or uncomfortable conditions for the user.
摘要:
An intravascular device (4) for placement within an animal vessel (6), the intravascular device (4) being adapted to at least one of sense and stimulate activity of neural tissue (54) located outside the vessel (6) proximate the intravascular device (4).
摘要:
An implant unit according to some embodiments may include a flexible carrier, at least one pair of modulation electrodes on the flexible carrier, and at least one implantable circuit in electrical communication with the at least one pair of modulation electrodes. The at least one pair of modulation electrodes and the at least one circuit may be configured for implantation through derma on an underside of a subject's chin and for location proximate to terminal fibers of the medial branch of the subject's hypoglossaS nerve, such that an electric field extending from the at least one pair of modulation electrodes can modulate one or more of the terminal fibers of the medial branch of the hypoglossal nerve.
摘要:
A device for delivering energy as a function of degree coupling may include an external unit configured for location external to a body of a subject and at least one processor associated with the implant unit and configured for electrical communication with a power source. The device may further include a primary antenna associated with the at least one processor. The processor may be configured to determine a degree of coupling between the primary antenna and a secondary antenna associated with the implant unit, and regulate delivery of power to the implant unit based on the degree of coupling between the primary antenna and the secondary antenna.
摘要:
Disclosed are improved rechargeable battery designs for an implantable medical device. The improved rechargeable battery is designed to reduce eddy currents in the conductive anode and/or cathode plates within the battery housing, thereby reducing excessive heat and vibrations caused when the battery is placed in a high magnetic field, such as within a MRI machine. Discontinuities may be cut in the anode and/or cathode plates to increase their resistance to eddy currents, while not significantly affecting the internal resistance between these plates.