Abstract:
The invention relates to a thermography IR system for determining the authenticity of a pharmaceutical product, the system comprises: (a) a thermography IR apparatus for: (a.1) acquiring at predefined controlled conditions an authenticity signature of an authentic pharmaceutical product, said authenticity signature comprises at least one thermography image of said authentic product, each of said images describes the distribution over said product of the IR radiation in an MWIR or LWIR spectrum as a function of temperature and emissivity; (a.2) storing said acquired authenticity signature in a memory; and (a.3) for a tested pharmaceutical product that corresponds to said authentic product, and whose authenticity is suspected, acquiring at same predefined controlled conditions a test signature, said test signature also comprises at least one thermography image of said tested product, each of said images describes the distribution over said test product of the IR radiation in an MWIR or LWIR spectrum as a function of temperature and emissivity; and (b) a comparison unit for comparing between said authenticity signature and said test signature.
Abstract:
Bei einem Verfahren zur automatischen Inspektion einer Schweißnaht mittels Wärmefluss-Thermografie wird ein Merkmalsvektor (W(N)) erstellt, der einen zeitlichen Verlauf eines erfassten Wärmeflusses (11) darstellt. Anhand des Merkmalsvektors (W(N)) werden aus einer Serie von Thermobildern ein erstes charakteristisches Thermobild, das einem minimalen Wärmefluss (W min ) durch ein zu untersuchendes Objekt entspricht, und ein zweites charakteristisches Thermobild, das einem maximalen Wärmefluss (W max ) durch das Objekt entspricht, ermittelt, wobei ein Wärmefluss (13) direkt von einer Anregungsquelle schon abgeklungen ist. Zur Detektierung und Auswertung der Schweißnaht in Bezug auf Fehler verschiedener Fehlertypen werden je Fehlertyp ein geeignetes Thermobild aus der Serie von Thermobildern verwendet, wobei die charakteristischen Thermobilder als Referenzen zum Festlegen des jeweils geeigneten Thermobildes dienen.
Abstract:
In one aspect, the present invention provides techniques and apparatus for optical characterization of photonic devices and/or circuits. By way of example, the techniques can be used to identify damaged devices in photonic integrated circuits. In some embodiments, thermal imaging is employed as a diagnositic tool for characterizing the devices/ciccuits under investigation. For example, in one embodiment, integrated cascaded semiconductor amplifiers can be characterized using amplied spontaneous emission from one amplifier as a thermal modulation input to another amplifier. A thermoreflectance image of the second amplifier can reveal flaws, if present. Further, in some embodiments, thermal imaging in conjunction with a total energy model can be employed to charaterize the elements of photonic circuits optically and/or to map the optical power distribution throughout the circuits.
Abstract:
Die Erfindung betrifft ein flächiges oder dreidimensionales Halbzeug für die Herstellung von Bauteilen aus faserverstärkten Verbundwerkstoffen, wobei das Halbzeug folgende Komponenten umfasst : eine aus Verstärkungsfasern gebildete zwei-oder dreidimensionale Struktur, optional einen Matrixbildner in der aus den Verstärkungsfasern gebildeten Struktur und mindestens einen sich kontinuierlich von einem Rand des Halbzeugs zu einem zweiten Rand des Halbzeugs erstreckenden Strang (1) aus elektrisch leitfähigen Fasern, welcher mindestens zwei Kontaktstellen für ein elektrische Kontaktierung aufweist und gegenüber seiner Umgebung im Halbzeug elektrisch isoliert ist. Die mit Kontaktstellen versehenen elektrisch leitfähigen Faserstränge erlauben die Einleitung elektrischer Energie in die Faser-verbünd-Struktur und deren Untersuchung mittels elektrischer Signale.
Abstract:
First and second thermal sensors measure the respective temperatures of portions of a surface of a structure such as an aircraft component. An alert signal is emitted if the temperatures of the surface portions are substantially different. An energy source causes heat flow within the structure. Subsurface flaws such as disbonded areas between composite layers and foreign materials obstruct heat flow within the structure and cause proximate surface portions to exhibit different temperatures. A non-alert signal may be emitted if the temperatures of proximate surface portions are essentially the same.
Abstract:
An apparatus for imaging an internal component of a non-homogeneous structure comprising an imaging system with either at least one camera having a plurality of filters of different wavelength pass bands associated therewith, or, a plurality of cameras of different imaging wavelength for imaging in one or more wavelength ranges wherein an external portion of the structure allows passage of radiation at a wavelength in the wavelength range and the internal component is essentially opaque at the wavelength.
Abstract:
Method for non-destructive testing fiber reinforced polymer material. An infrared sensor such as an infrared camera is used so making a picture of the article to be tested. This article is generally a fiber reinforced polymer material article and more preferable a fibre reinforced fiber reinforced polymer material. According to the invention a group of resistance wires is heated during or before inspecting the article. According to the invention heating is internally effected through a array o f electrically resistance wires being preferably incorporated in the fibre material used for reinforcement. More preferable this heating array is provided away from the infrared sensor. In this way defects in a fiber reinforced polymer material article can easily be distinguished during inspection. Applications are at production of articles and regular inspections of for example airplane components.
Abstract:
A thermal imaging system for a battery module enclosure that includes first and second battery module enclosure components between which a weld is formed includes a thermal imaging camera that focuses on the first and second battery module enclosure components within a predetermined amount of time after the weld is formed and that acquires a thermal signature. A control module includes an image processing module that receives the thermal signature and that locates a predetermined reference point in the thermal signature. An image comparison module receives the thermal signature and uses the predetermined reference point to compare the thermal signature to a template signature in order to verify structural integrity of the weld. The image comparison module computes a relative measure of deviation of the thermal signature from the template signature and identifies the weld as defective when the relative measure of deviation is greater than a predetermined value.
Abstract:
La présente invention concerne notamment un procédé de détection de défauts d'un produit en cours de défilement dans un laminoir, consistant notamment à éclairer (ECL) ce produit, à en acquérir (ACQ) une image (I 3 ) dans au moins une bande spectrale, à prétraiter (PTTRM) l'image formée, à détecter et extraire (DTEXTR) les éventuels domaines suspects (Z V ) de l'image prétraitée (DL V ), et à classifier (CLASS) les domaines suspects en une ou plusieurs catégories de défauts ou de non-défauts. Selon l'invention, qui est appliquée aux produits laminés à chaud, le produit est observé dans trois bandes spectrales disjointes, incluant l'infrarouge, le rouge et par exemple le vert, de sorte que les domaines suspects (Z IR , Z R , Z V , Z 4 ) peuvent être classifiés en une ou plusieurs catégories de non-défauts ou de défauts, incluant des défauts de surface et des défauts de structure.
Abstract:
The invention concerns an equipment for non-contact temperature measurement (1) of samples of materials (2) arranged in a vacuum chamber (12). A UV lamp (6) illuminates the samples (2) through a window (4), so as to subject them to a predetermined thermal cycle and to perform an environmental test, in particular for materials designed for space missions. An external pyrometer measures the temperature of the samples (2) through a window (6). It is associated with a scanning module (9) including a mobile mirror, with two axes of rotation and three orthogonal axes of translation, arranged on the optical path of the infrared radiation (Rir) so as to obtain a two-dimensional scanning of each sample (2) by means of a measuring spot focused on the surface of the samples. In a preferred embodiment, the samples are of slight thickness and locked pressed against a convex support. The whole assembly is monitored by an automatic data processing system with recorded programme (10).