Abstract:
In one aspect an imaging system includes: an illumination system including an array of light sources; an optical system including one or more lens arrays, each of the lens arrays including an array of lenses, each of the lenses in each of the one or more lens arrays in alignment with a corresponding set of light sources of the array of light sources; an imaging system including an array of image sensors, each of the image sensors in alignment with a corresponding lens or set of lenses of the one or more lens arrays, each of the image sensors configured to acquire image data based on the light received from the corresponding lens or set of lenses; a plate receiver system capable of receiving a multi-well plate including an array of wells, the plate receiver system configured to align each of the wells with a corresponding one of the image sensors; and a controller configured to control the illumination of the light sources and the acquisition of image data by the image sensors, the controller further configured to perform: an image acquisition process including a plurality of scans, each scan associated with a unique pattern of illumination, each of the image sensors configured to generate an image for a respective one of the wells during each scan; and an image reconstruction process during which the controller performs a fourier ptychographic operation to generate a reconstructed image for each of the wells based on the image data captured for the respective well during each of the scans.
Abstract:
This disclosure provides implementations of multi-gate transistors, structures, devices, apparatus, systems, and related processes. In one aspect, a device includes a thin-film semiconducting layer arranged over a substrate. A drain and source are coupled to the semiconducting layer. The device also includes first, second and third gates all arranged adjacent the semiconducting layer and configured to receive first, second, and third control signals, respectively. Dielectric layers insulate the gates from the semiconducting layer and from one another. In a first mode, the first, second, and third gates are configured such that charge is stored in a potential well in a region of the semiconducting layer adjacent the second gate. In a second mode, the first, second and third gate electrodes are configured such that the stored charge is transferred through the region of the semiconducting layer adjacent the third gate electrode and through the source to a load.
Abstract:
This disclosure provides implementations of electromechanical systems (EMS) resonator structures, devices, apparatus, systems, and related processes. In one aspect, a method includes providing a first substrate and a second substrate. In some implementations, the first substrate includes a cavity ceiling, an array of dielectric spacers, and an assembly platform arranged adjacent the array of dielectric spacers opposite the cavity ceiling surface. The assembly platform includes a plurality of post tops. In some implementations, the second substrate has an array of cavities and an array of resonator posts. In some implementations, the method includes mating the first substrate with the second substrate, connecting the post tops with the posts to form an array that includes a plurality of evanescent-mode electromagnetic wave cavity resonators, wherein at least a statically-defined magnitude of a gap distance between the distal surface of each post top and the cavity ceiling is defined by the dielectric spacers.
Abstract:
This disclosure provides devices, computer programs and methods for determining a motion direction. In one aspect, a mobile device includes one or more sensors configured to measure acceleration data in each of one or more directions. The mobile device also includes one or more processors and a memory storing instructions that, when executed by the one or more processors, implement a motion direction estimation module. The motion direction estimation module is configured to identify a use case for the mobile device based at least in part on the acceleration data. The motion direction estimation module also is configured to select a set of one or more parameters based on the identified use case. The motion direction estimation module is further configured to calculate an estimated motion direction of the mobile device based on the acceleration data and the respective set of parameters corresponding to the identified use case.
Abstract:
This disclosure provides implementations of systems, devices, components, computer products, methods, and techniques for correcting or compensating for moving visual object distortions. In one aspect, a method includes combining image data from a first frame with image data from a second frame to generate a fused image frame. Additionally or alternatively, the method can include applying a shear transformation to the image data in the first frame to generate a sheared image frame. One of, or a combination of, the fused image frame and the sheared image frame may be displayed as a pre-distorted image frame so that, when viewed on the display, the pre-distorted image frame compensates for distortion that can otherwise be perceived by a user when viewing the displayed moving visual object.
Abstract:
This disclosure provides implementations of filters and filter topologies, circuits, structures, devices, apparatus, systems, and related processes. In one aspect, a device includes one or more LC resonant circuit stages (702, 704). In some implementations, each LC stage (702, 704) includes an inductor (706) and a capacitor (708). Each LC stage (702, 704) also has a corresponding resonant frequency. The one or more LC stages (702, 704) are arranged to produce an unmodified passband over a range of frequencies having a corresponding bandwidth. One or more microelectromechanical systems (MEMS) resonators (710, 712) are arranged with the one or more LC stages (702, 704) so as to modify characteristics of the unmodified passband such that the hybrid filter produces a modified passband having a modified bandwidth or one or more other modified band characteristics.
Abstract:
This disclosure provides implementations of electromechanical systems (EMS) resonator structures, devices, apparatus, systems, and related processes. In one aspect, a device includes an evanescent-mode electromagnetic-wave cavity resonator. In some implementations, the cavity resonator includes a lower cavity portion and an upper cavity portion that together form a volume. The cavity resonator also includes an in-plane resonator structure having a portion that is located at least partially within the volume to support one or more evanescent electromagnetic wave modes. In some implementations, an upper surface of the resonator structure is connected with the upper cavity portion while a lower mating surface is connected with the lower cavity portion. A distal surface of the resonator structure is separated or electrically insulated from the closest surface to it by a gap distance, a resonant electromagnetic wave mode of the cavity resonator being dependent at least partially upon the gap distance.
Abstract:
This disclosure provides implementations of electromechanical systems piezoelectric transformers, devices, apparatus, systems, and related processes. In one aspect, a transformer includes piezoelectric means including piezoelectric material, first conductive means arranged over a first surface of the piezoelectric material, and second conductive means arranged over a second surface opposite the first surface. The first conductive means includes a first set of electrodes (112) and a second set of electrodes (114) interdigitated with the first set. The second conductive means includes at least a third set of electrodes. The transformer also includes first coupling means capable of receiving an input signal, and second coupling means capable of being electrically connected to a load and capable of outputting an output signal. The first set of electrodes is in electrical connection with the first coupling means and the second set of electrodes is in electrical connection with the second coupling means.
Abstract:
In one aspect, a system for indexing transactions over a plurality of communication lines is described. In various embodiments, the system includes a host controller and a plurality of storage devices in communication with one another. Each of the storage devices is configured to store data. The communication lines facilitate communications between the host controller and the plurality of storage devices. A selected one of the storage devices is configured to function as a transaction indexer to monitor the communication lines and index and store selected transaction information associated with operations that occur over the communication lines. While the host controller may be arranged to configure the transaction indexer, the transaction monitoring, indexing and storing are performed substantially automatically by the transaction indexer without requiring further instructions from the host controller.
Abstract:
In one innovative aspect of the disclosure, a method includes patterning a first region and a first portion of a second region of a substrate using a first reticle. The method also includes patterning the second region and a first portion of the first region using a second reticle. The method additionally includes forming a first array of first patterned elements based on the patterning by the first reticle, and forming a second array of second patterned elements based on the patterning by the second reticle. In some implementations, each of the first and the second arrays are incomplete in each of the first portions. However, the first patterned elements in the first portion of the second region are complementary to the second patterned elements in the first portion of the second region. Similarly, the first patterned elements in the first portion of the first region are complementary to the second patterned elements in the first portion of the first region. In some such implementations, the combination of the first array and the second array form a complete array of patterned elements.