Abstract:
Systems and methods are provided that compensate for frequency drift due to temperature variation without the need for a temperature sensor. In one embodiment, a navigation receiver with an integrated communication device receives a base station reference signal, which is used to periodically calibrate a local oscillator frequency. In another embodiment, the calibrated local oscillator frequency drives a counter that is used to provide code phase estimation at the start of satellite signal acquisition. To provide temperature compensation in one embodiment, the calibrated local frequency is used to drive one or more counters at different calibration rates (i.e., different time intervals between calibrations). Count values from these counters are used to determine compensation for frequency drift due to temperature variation based on predicted frequency drift variation patterns between calibrations. This temperature compensation does not require a temperature sensor and further improves the accuracy of the code phase estimation.
Abstract:
In one embodiment, a phase locked loop (PLL) comprises a voltage-controlled oscillator (VCO), a frequency divider configured to frequency divide an output signal of the VCO to produce a feedback signal, and a phase detection circuit configured to detect a phase difference between a reference signal and the feedback signal, and to generate an output signal based on the detected phase difference. The PLL also comprises a proportional circuit configured to generate a control voltage based on the output signal of the phase detection circuit, wherein the control voltage tunes a first capacitance of the VCO to provide phase correction. The PLL further comprises an integration circuit configured to convert the control voltage into a digital signal, to integrate the digital signal, and to tune a second capacitance of the VCO based on the integrated digital signal to provide frequency tracking.
Abstract:
In one embodiment, a method for converting an input digital signal into an analog signal is provided. The method comprises modulating the input digital signal into a modulated digital signal, and converting the modulated digital signal into the analog signal using a digital-to-analog converter (DAC). The modulation shapes quantization noise of the DAC to place a notch at a frequency within an out-of-bound frequency band to reduce the quantization noise within the out-of-bound frequency band.
Abstract:
In one embodiment, a method of temperature control comprises receiving temperature readings from a temperature sensor on a chip, calculating one or more second derivatives of temperature with respect to time based on the temperature readings, and determining whether to perform temperature mitigation on the chip based on the one or more calculated second derivatives of temperature.
Abstract:
Provided herein are systems and methods that provide community based voting and/or actionable multi-media messaging in a social network. In an embodiment, actionable multi-media messaging is provided, in which the user receives a message comprising an actionable item that the user can act on. The actionable item can be, e.g., to purchase an item, to vote on a ballot, or other actions that can be taken by the user. In another embodiment, community based voting is provided, in which a user receives a message comprising a voting ballot. In this embodiment, the user can vote on the ballot, and publish his/her vote to his/her social network, e.g., to express his/her likes and dislikes. The user can also forward the ballot to other users in his/her social network, and view how other individual users in his/her the social network have voted.
Abstract:
In one embodiment, the methods and apparatuses detect a plurality of targets; select one of the plurality of targets as a selected target; detect a profile associated with the selected target; and display information associated with the selected target, wherein the information is referenced in the profile associated with the selected target.
Abstract:
In one embodiment, a method for speaker operation comprises sensing an input common mode signal of a driver, wherein the driver drives a speaker, and adjusting the input common mode signal of the driver based on a difference between the sensed input common mode signal and a reference signal. The method also comprises sensing a current of a coil of the speaker, and control an output volume of the speaker based at least in part on the sensed current.
Abstract:
Described herein are systems and methods in which a carbon nanotube (CNT) is used as a demodulator of amplitude-modulated (AM) signals. Due to the nonlinear current-voltage (I-V) characteristics of a CNT, the CNT induces rectification of an applied RF signal enabling the CNT to function as a demodulator of an amplitude-modulated (AM) RF signal. By properly biasing the CNT such that the operating point is centered on the maximum portion of the I-V curve, the demodulation effect of the CNT can be maximized. The present invention is useful for possible nanoscale wireless communications systems, e.g., nanoscale radios.
Abstract:
Described herein are code-modulated multi-signal systems. In one embodiment, a multi-signal system receives multiple input signals and code-modulates each input signal with a unique code to distinguish the input signal from the other input signals. The input signals may come from multiple antennas, multiple sensors, multiple channels, etc. The code-modulated signals are then combined into a combined signal that is sent through shared blocks and/or transmitted across a shared medium in a shared path. After shared processing and/or shared transmission, the individual signals are recovered using matched filters. Each matched filter contains a code corresponding to one of the unique codes for recovering the corresponding signal from the combined signal. The recovered signals may then be inputted to additional processors for further processing.
Abstract:
In one embodiment, a system comprises a pre-driver circuit and a driver. The pre-driver circuit is powered by a first supply voltage, and configured to output a pre-drive signal. The driver comprises a pull-up NMOS transistor having a drain coupled to a second supply voltage, and a source coupled to an output of the driver, wherein the second supply voltage is lower than the first supply voltage by at least a threshold voltage of the pull-up NMOS transistor. The driver also comprises a drive circuit coupled to a gate of the pull-up NMOS transistor, wherein the drive circuit is configured to receive the pre-drive signal and to drive the gate of the pull-up NMOS transistor with a voltage approximately equal to the first supply voltage to drive the output of the driver to a high state depending on a logic state of the pre-drive signal.