Abstract:
Disclosed are masks and mask blanks for photolithographic processes, photosensitive materials and fabrication method therefor. Photosensitive materials are used in the masks for recording permanent pattern features via UV exposure. The masks are advantageously phase-shifting, but can be gray-scale masks having index patterns with arbitrary distribution of refractive index and pattern dimension. The masks may have features above the surface formed from opaque or attenuating materials. Alumino-boro-germano-silicate glasses having a composition comprising, in terms of mole percentage, 1-6% of Al 2 O 3 , 10-36% of B 2 O 3 , 2-20% of GeO 2 , 40-80% of SiO 2 , 2-10% of R 2 O, where R is selected from Li, Na and K, and expressed in terms of weight percentage of the glass, 0-5% of F, can be used for the mask substrate.
Abstract translation:公开了用于光刻工艺的掩模和掩模坯料,感光材料及其制造方法。 光敏材料用于通过紫外线曝光记录永久图案特征的掩模。 掩模有利地是相移,但是可以是具有折射率和图案尺寸的任意分布的索引图案的灰度掩模。 掩模可以具有由不透明或衰减材料形成的表面上方的特征。 氧化铝 - 硼 - 锗酸 - 硅酸盐玻璃,其组成包括以摩尔百分比计为1〜6%的Al 2 O 3,10-36%的B 2 O 3,2〜20%的GeO 2,40〜80%的SiO 2,2-10 R 2选自Li,Na和K的R 2 O%,并且以玻璃重量百分比表示,0-5%的F可以用于掩模基板。
Abstract:
Methods of fabricating dimensional silica-based substrates or structures comprising a porous silicon layers are contemplated. According to one embodiment, oxygen is extracted from the atomic elemental composition of a silica glass substrate by reacting a metallic gas with the substrate in a heated inert atmosphere to form a metal-oxygen complex along a surface of the substrate. The metal-oxygen complex is removed from the surface of the silica glass substrate to yield a crystalline porous silicon surface portion and one or more additional layers are formed over the crystalline porous silicon surface portion of the silica glass substrate to yield a dimensional silica-based substrate or structure comprising the porous silicon layer. Embodiments are also contemplated where the substrate is glass-based, but is not necessarily a silica-based glass substrate. Additional embodiments are disclosed and claimed.
Abstract:
A solar heat collection element includes: a central tube formed from glass-ceramic material; and an outer tube formed from glass material disposed coaxially with respect to the central tube to form a volume therebetween.
Abstract:
An alkali aluminosilicate glass article, said alkali aluminosilicate glass having a surface compressive stress of at least about 200 MPa, a surface compressive layer having a depth of at least about 30 µm, a thickness of at least about 0.3 mm and an amphiphobic fluorine-based surface layer chemically bonded to the surface of the glass. In one embodiment the glass has an anti reflective coating applied to one surface of the glass between the chemically strengthened surface of the glass and the amphiphobic coating. In another embodiment the surface of the chemically strengthened glass is acid treated using a selected acid (e.g., HCL, H 2 SO 4 , HClO 4 , acetic acid and other acids as described) prior to placement of the amphiphobic coating or the anti reflective coating.
Abstract translation:一种碱性铝硅酸盐玻璃制品,所述碱性铝硅酸盐玻璃具有至少约200MPa的表面压缩应力,具有至少约30μm深度的表面压缩层,至少约0.3mm的厚度和两性氟基 化学键合到玻璃表面的表面层。 在一个实施方案中,玻璃具有在玻璃的化学强化表面和两性涂层之间施加到玻璃的一个表面的抗反射涂层。 在另一个实施方案中,在放置两性涂层或抗反射涂层之前,使用选定的酸(例如,HCL,H 2 SO 4,HClO 4,乙酸和其它酸)对化学强化玻璃的表面进行酸处理。
Abstract:
Disclosed are masks and mask blanks for photolithographic processes, photosensitive materials and fabrication method therefor. Photosensitive materials are used in the masks for recording permanent pattern features via UV exposure. The masks are advantageously phase-shifting, but can be gray-scale masks having index patterns with arbitrary distribution of refractive index and pattern dimension. The masks may have features above the surface formed from opaque or attenuating materials. Alumino-boro-germano-silicate glasses having a composition comprising, in terms of mole percentage, 1-6% of Al2O3, 10-36% of B2O3, 2-20% of GeO2, 40-80% of SiO2, 2-10% of R2O, where R is selected from Li, Na and K, and expressed in terms of weight percentage of the glass, 0-5% of F, can be used for the mask substrate.
Abstract translation:公开了用于光刻工艺的掩模和掩模坯料,感光材料及其制造方法。 光敏材料用于通过紫外线曝光记录永久图案特征的掩模。 掩模有利地是相移,但是可以是具有折射率和图案尺寸的任意分布的索引图案的灰度掩模。 掩模可以具有由不透明或衰减材料形成的表面上方的特征。 氧化铝 - 硼 - 锗酸 - 硅酸盐玻璃,其组成包括以摩尔百分比计为1〜6%的Al 2 O 3,10-36%的B 2 O 3,2〜20%的GeO 2,40〜80%的SiO 2,2-10 R 2选自Li,Na和K的R 2 O%,并且以玻璃重量百分比表示,0-5%的F可以用于掩模基板。
Abstract:
Disclosed are masks and mask blanks for photolithographic processes, photosensitive films and fabrication method therefor. Photosensitive films are deposited on a substrate in the masks for recording permanent pattern features via UV exposure. The masks are advantageously phase-shifting, but can be gray-scale masks having index patterns with arbitrary distribution of refractive index and pattern depth. The masks may have features above the surface formed from opaque or attenuating materials. Boro-germano-silicate photosensitive films having a composition consisting essentially, in terms of mole percentage, of: 0-20% of B2O3, 5-25% of GeO2 and the remainder SiO2 can be used for the film. The film is advantageously deposited by using PECVD wherein tetramethoxygermane is used as the germanium source.
Abstract:
Disclosed are masks and mask blanks for photolithographic processes, photosensitive films and fabrication method therefor. Photosensitive films are deposited on a substrate in the masks for recording permanent pattern features via UV exposure. The masks are advantageously phase-shifting, but can be gray-scale masks having index patterns with arbitrary distribution of refractive index and pattern depth. The masks may have features above the surface formed from opaque or attenuating materials. Boro-germano-silicate photosensitive films having a composition consisting essentially, in terms of mole percentage, of: 0-20% of B2O3, 5-25% of GeO2 and the remainder SiO2 can be used for the film. The film is advantageously deposited by using PECVD wherein tetramethoxygermane is used as the germanium source.
Abstract:
Methods of fabricating dimensional silica-based substrates or structures comprising a porous silicon layers are contemplated. According to one embodiment, oxygen is extracted from the atomic elemental composition of a silica glass substrate by reacting a metallic gas with the substrate in a heated inert atmosphere to form a metal-oxygen complex along a surface of the substrate. The metal-oxygen complex is removed from the surface of the silica glass substrate to yield a crystalline porous silicon surface portion and one or more additional layers are formed over the crystalline porous silicon surface portion of the silica glass substrate to yield a dimensional silica-based substrate or structure comprising the porous silicon layer. Embodiments are also contemplated where the substrate is glass-based, but is not necessarily a silica-based glass substrate. Additional embodiments are disclosed and claimed.
Abstract:
A solar heat collection element includes: a central tube (102) formed from glass-ceramic material; and an outer tube (104) formed from glass material disposed coaxially with respect to the central tube (102) to form a volume therebetween (106).