Abstract:
A growth mask layer including an array of apertures therethrough can be formed on a single crystalline gallium nitride layer. Group III nitride nanostructures including gallium nitride or indium gallium nitride nanopyramids or nanowires can be formed through the array of apertures by a selective epitaxy process. An indium gallium nitride material can be deposited by another selective epitaxy process on the Group III nitride nanostructures until a continuous indium gallium nitride template layer is formed. The continuous indium gallium nitride template layer has a dislocation density that decreases with distance from the growth mask layer. Red light emitting diodes can be formed over the continuous indium gallium nitride template layer with higher efficiency due the relatively large lattice constant of the continuous indium gallium nitride template layer.
Abstract:
Methods and equipment for the removal of semiconductor wafers grown on the top surface of a single crystal silicon substrate covered by a porous silicon separation layer by using IR irradiation of the porous silicon separation layer to initiate release of the semiconductor wafer from the substrate, particularly at edges (and corners) of the top surface of the substrate.
Abstract:
A semiconductor device structure comprising: a layer of compound semiconductor material; and a layer of polycrystalline CVD diamond material, wherein the layer of polycrystalline CVD diamond material is bonded to the layer of compound semiconductor material via a layer of nano-crystalline diamond which is directly bonded to the layer of compound semiconductor material, the layer of nano-crystalline diamond having a thickness in a range 5 to 50 nm and configured such that an effective thermal boundary resistance (TBReff) as measured by transient thermoreflectance at an interface between the layer of compound semiconductor material and the layer of polycrystalline CVD diamond material is no more than 50 m 2 K/GW.
Abstract:
La présente invention concerne un procédé de fabrication d'un matériau semi-conducteur incluant une couche de nitrure d'élément III semi-polaire à partir d'un substrat de départ semi-polaire incluant une pluralité de gorges espacées périodiquement d'une distance, chaque gorge incluant un premier flanc incliné d'orientation cristallographique C (0001) et un deuxième flanc incliné d'orientation cristallographique différente, le procédé comprenant les phases consistant à: Former (2) des cristaux de nitrure d'élément III sur les premiers flancs inclinés des gorges, les paramètres de croissance des cristaux de nitrure d'élément III étant adaptés pour favoriser une croissance latérale desdits cristaux de sorte à induire un chevauchement entre les cristaux de nitrure d'élément III adjacents, et continuer la croissance jusqu'à coalescence des cristaux de nitrure d'élément III pour former une couche de cristaux de nitrure d'élément III coalescés; Former (3) une couche bidimensionnelle de nitrure d'élément III sur la couche de cristaux de nitrure d'élément III coalescés.
Abstract:
Embodiments of semiconductor assemblies, and related integrated circuit devices and techniques, are disclosed herein. In some embodiments, a semiconductor assembly may include a flexible substrate, a polycrystalline semiconductor material, and a polycrystalline dielectric disposed between and adjacent to the flexible substrate and the polycrystalline semiconductor material. The polycrystalline semiconductor material may include a polycrystalline III-V material, a polycrystalline II-VI material or polycrystalline germanium. Other embodiments may be disclosed and/or claimed.
Abstract:
Es wird ein Epitaxiesubstrat (11, 12, 13) für ein Nitrid- Verbindungshalbleitermaterial angegeben, das eine Nukleationsschicht (2) direkt auf einem Substrat (1) aufweist, wobei die Nukleationsschicht (2) zumindest eine erste Schicht (21) aus AlON mit einer Säulenstruktur aufweist. Weiterhin werden ein Verfahren zur Herstellung eines Epitaxiesubstrats und ein optoelektronischer Halbleiterchip mit einem Epitaxiesubstrat
Abstract:
A dielectric template layer is deposited on a substrate. Line trenches are formed within the dielectric template layer by an anisotropic etch that employs a patterned mask layer. The patterned mask layer can be a patterned photoresist layer, or a patterned hard mask layer that is formed by other image transfer methods. A lower portion of each line trench is filled with an epitaxial rare-earth oxide material by a selective rare-earth oxide epitaxy process. An upper portion of each line trench is filled with an epitaxial semiconductor material by a selective semiconductor epitaxy process. The dielectric template layer is recessed to form a dielectric material layer that provides lateral electrical isolation among fin structures, each of which includes a stack of a rare-earth oxide fin portion and a semiconductor fin portion.
Abstract:
A method for fabricating a Ill-nitride based semiconductor device, including (a) growing one or more buffer layers on or above a semi-polar or non-polar GaN substrate, wherein the buffer layers are semi-polar or non-polar Ill-nitride buffer layers; and (b) doping the buffer layers so that a number of crystal defects in III- nitride device layers formed on or above the doped buffer layers is not higher than a number of crystal defects in Ill-nitride device layers formed on or above one or more undoped buffer layers. The doping can reduce or prevent formation of misfit dislocation lines and additional threading dislocations. The thickness and/or composition of the buffer layers can be such that the buffer layers have a thickness near or greater than their critical thickness for relaxation. In addition, one or more (AlInGaN) or Ill-nitride device layers can be formed on or above the buffer layers.