Abstract:
Multi-lumen catheters with improved tip configurations, including a triple-lumen catheter which may be useful for apheresis. In one variation, the catheter has three lumens with distal openings angularly spaced apart and staggered axially with respect to one another. In another variation, the catheter has two lumens exiting distally and one centrally positioned lumen exiting proximally. A third variation is a catheter with a single distal opening and two proximal openings. The staggered lumen openings along the axial length of the catheter may decrease recirculation while maximizing flow rates.
Abstract:
Access ports for providing subcutaneous access to a patient are disclosed. Such access ports may include: at least one structural element configured for resisting deformation of the septum in response to a pressure developed within the reservoir. Further, an access port may be structured for accommodating: 1) a flow rate of at least about 1 milliliter per second; or 2) a pressure developed within the reservoir of at least about 35 psi. An infusion set is disclosed and may be structured for flowing a fluid at a flow rate of at least about 1 milliliter per second. Infusion tubing comprising a plurality of layers is disclosed. Methods of operating and flowing a fluid through an access port or an infusion set are disclosed. A method of identifying an access port for power injection is disclosed. Septums comprising at least one gel region are disclosed.
Abstract:
An access port assembly having an ultrasonic weld energy director and method of assembling the access port utilizing the energy director. The access port may include a dual chamber port base and a port top for securing two septa on the base. An energy director may be positioned on the top end of the port base and a corresponding flat may be provided on the underside of the port top for receiving the energy director. Once the port top is aligned on top of the port based with the septa positioned in-between, far field welding may be implemented to connect the port top to the port base. The access port assembly may be further configured such that when the components are assembled for welding, the weld area is confined from air surrounding the port assembly.
Abstract:
A subcutaneous infusion device, including an infusion set and conduit, the infusion set including a cannula and a hub. The cannula may include a coil component that is helically arranged around a longitudinal axis to define a lumen and a tubing component that is associated with the coil component and may take on the shape of the outer surface thereof. The cannula may include a proximal guide to assist in the insertion of a needle therethrough. Both integral and attachable infusion set and conduit combinations are described, as well as a sterile package and insertion mechanism.
Abstract:
A safety needle assembly of an infusion set for infusing fluids into a subcutaneously implanted access port is disclosed. The needle assembly is configured to prevent fluid/vapor escape therefrom so as to reduce or prevent fluid exposure to a clinician using the needle assembly. In one embodiment, the needle assembly comprises a handle portion including a needle extending therefrom, the needle defining a lumen for passage of a fluid therethrough. The needle assembly also includes a safety assembly defining a needle hole through which the needle initially extends. The safety assembly is selectively and axially slidable along the needle in order to shield a distal tip of the needle and prevent user contact therewith. A fluid isolation component is included in the safety assembly for isolating fluid escape from the needle to prevent exposure to a clinician.
Abstract:
An integrated catheter placement system for accurately placing a catheter within a patient's vasculature is disclosed. In one embodiment, the integrated system comprises a system console, a tip location sensor for temporary placement on the patient's chest, and an ultrasound probe. The tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to introduction of the catheter. ECG signal-based catheter tip guidance is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart. Various means for establishing a conductive pathway between a sterile field of the patient and a non-sterile field to enable passage of ECG signals from the catheter to the tip location sensor are also disclosed.
Abstract:
An exemplary infusion system for accessing an implanted device is disclosed comprising an insertion assembly, a hub comprising a sealable path configured to receive at least a portion of the insertion assembly, a flexible catheter attached to the hub and configured to receive at least a portion of the insertion assembly, and an extension tube attached to the hub. The hub may comprise a manifold element configured to provide fluid communication between the flexible catheter and the extension tube. The hub may also comprise a septum configured to seal the sealable path upon removal of the insertion assembly from the flexible catheter. The extension tube may also be configured to receive at least a portion of the insertion assembly. Exemplary methods of providing a fluid communication path to an implanted device are also disclosed.
Abstract:
Multi-lumen catheters with improved tip configurations, including a triple-lumen catheter which may be useful for apheresis. In one variation, the catheter has three lumens with distal openings angularly spaced apart and staggered axially with respect to one another. In another variation, the catheter has two lumens exiting distally and one centrally positioned lumen exiting proximally. A third variation is a catheter with a single distal opening and two proximal openings. The staggered lumen openings along the axial length of the catheter may decrease recirculation while maximizing flow rates.
Abstract:
A guidance system for assisting with the insertion of a needle or other medical component into the body of a patient is disclosed. The guidance system utilizes ultrasound imaging or other suitable imaging technology. In one embodiment, the guidance system comprises an imaging device including a probe for producing an image of an internal body portion target, such as a vessel. One or more sensors are included with the probe. The sensors sense a detectable characteristic related to the needle, such as a magnetic field of a magnet included with the needle. The system includes a processor that uses data relating to the detectable characteristic sensed by the sensors to determine a position and/or orientation of the needle in three spatial dimensions. The system includes a display for depicting the position and/or orientation of the needle together with the image of the target.
Abstract:
A stitching device (110) and method of operating the stitching device to form an embolic protection device is disclosed. The stitching device (110) includes a clamping assembly (114) and an advancing assembly (116). The clamping assembly (114) holds a restraining member about a filter assembly while the advancing assembly threads or stitches a securing member through the restraining member. The clamping assembly (114) includes a first clamping portion (118) and a second clamping portion (120), each having an upper row of teeth and a lower row of teeth divided by a channel. The advancing assembly (116) includes a threading assembly (186) with an engagement member (200) for engaging and advancing the securing member.