Abstract:
Multi-lumen catheters with improved tip configurations, including a triple-lumen catheter which may be useful for apheresis. In one variation, the catheter has three lumens with distal openings angularly spaced apart and staggered axially with respect to one another. In another variation, the catheter has two lumens exiting distally and one centrally positioned lumen exiting proximally. A third variation is a catheter with a single distal opening and two proximal openings. The staggered lumen openings along the axial length of the catheter may decrease recirculation while maximizing flow rates.
Abstract:
An integrated catheter placement system for accurately placing a catheter within a patient's vasculature is disclosed. In one embodiment, the integrated system comprises a system console, a tip location sensor for temporary placement on the patient's chest, and an ultrasound probe. The tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to introduction of the catheter. ECG signal-based catheter tip guidance is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart. Various means for establishing a conductive pathway between a sterile field of the patient and a non-sterile field to enable passage of ECG signals from the catheter to the tip location sensor are also disclosed.
Abstract:
Access ports for providing subcutaneous access to a patient are disclosed. Such access ports may include: at least one structural element configured for resisting deformation of the septum in response to a pressure developed within the reservoir. Further, an access port may be structured for accommodating: 1) a flow rate of at least about 1 milliliter per second; or 2) a pressure developed within the reservoir of at least about 35 psi. An infusion set is disclosed and may be structured for flowing a fluid at a flow rate of at least about 1 milliliter per second. Infusion tubing comprising a plurality of layers is disclosed. Methods of operating and flowing a fluid through an access port or an infusion set are disclosed. A method of identifying an access port for power injection is disclosed. Septums comprising at least one gel region are disclosed.
Abstract:
A catheter connector system for a subcutaneously placed catheter. The catheter connector system permits proximal trimming of the placed catheter, which is a procedure that provides numerous advantages over traditional methods of trimming catheter distal ends prior to implantation. The catheter connector system can be configured for a single lumen catheter or a multiple lumen catheter. The catheter connector system facilitates precise positioning of both distal and proximal ends of a catheter, providing enhanced functionability and patient comfort.
Abstract:
An insertion tool for inserting a catheter into a body of a patient is disclosed. The insertion tool unifies needle insertion, guidewire advancement, and catheter insertion in a single device. In one embodiment, the insertion tool comprises a housing in which at least a portion of the catheter is initially disposed, a hollow needle distally extending from the housing with at least a portion of the catheter pre-disposed over the needle, and a guidewire pre-disposed within the needle. A guidewire advancement assembly is also included for selectively advancing the guidewire distally past a distal end of the needle in preparation for distal advancement of the catheter. In one embodiment a catheter advancement assembly is also included for selectively advancing the catheter into the patient. Each advancement assembly can include a slide or other actuator that enables a user to selectively advance the desired component.
Abstract:
An integrated catheter placement system for accurately placing a catheter within a patient's vasculature is disclosed. In one embodiment, the integrated system comprises a system console, a tip location sensor for temporary placement on the patient's chest, and an ultrasound probe. The tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to intravascular introduction of the catheter. The ultrasound probe includes user input controls for controlling use of the ultrasound probe in an ultrasound mode and use of the tip location sensor in a tip location mode. In another embodiment, ECG signal- based catheter tip guidance is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart.
Abstract:
An integrated catheter placement system for accurately placing a catheter within a patient's vasculature is disclosed. In one embodiment, the integrated system comprises a system console, a tip location sensor for temporary placement on the patient's chest, and an ultrasound probe. The tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to introduction of the catheter. ECG signal-based catheter tip guidance is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart. Various means for establishing a conductive pathway between a sterile field of the patient and a non-sterile field to enable passage of ECG signals from the catheter to the tip location sensor are also disclosed.
Abstract:
An integrated catheter placement system for accurately placing a catheter within a patient's vasculature is disclosed. In one embodiment, the integrated system comprises a system console, a tip location sensor for temporary placement on the patient's chest, and an ultrasound probe. The tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to intravascular introduction of the catheter. The ultrasound probe includes user input controls for controlling use of the ultrasound probe in an ultrasound mode and use of the tip location sensor in a tip location mode. In another embodiment, ECG signal- based catheter tip guidance is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart.
Abstract:
An exemplary infusion system for accessing an implanted device is disclosed comprising an insertion assembly, a hub comprising a sealable path configured to receive at least a portion of the insertion assembly, a flexible catheter attached to the hub and configured to receive at least a portion of the insertion assembly, and an extension tube attached to the hub. The hub may comprise a manifold element configured to provide fluid communication between the flexible catheter and the extension tube. The hub may also comprise a septum configured to seal the sealable path upon removal of the insertion assembly from the flexible catheter. The extension tube may also be configured to receive at least a portion of the insertion assembly. Exemplary methods of providing a fluid communication path to an implanted device are also disclosed.
Abstract:
Multi-lumen catheters with improved tip configurations, including a triple-lumen catheter which may be useful for apheresis. In one variation, the catheter has three lumens with distal openings angularly spaced apart and staggered axially with respect to one another. In another variation, the catheter has two lumens exiting distally and one centrally positioned lumen exiting proximally. A third variation is a catheter with a single distal opening and two proximal openings. The staggered lumen openings along the axial length of the catheter may decrease recirculation while maximizing flow rates.