Abstract:
Methods and systems may provide for a gyratory sensing system (GSS) for extending the human machine interface (HMI) of an electronic device, particularly small form factor, wearable devices. The gyratory sensing system may include a gyratory sensor and a rotatable element to engage the gyratory sensor. The rotatable element may be sized and configured to be easily manipulated by hand to extend the HMI of the electronic device such that the functions of the HMI may be more accessible. The rotatable element may include one or more rotatable components, such as a body, edge or face of a smart watch, that each may be configured to perform a function upon rotation, such as resetting, selecting, and/or activating a menu item.
Abstract:
A universal serial bus hybrid footprint design is described herein. The design includes an outer row of one or more surface mount technology (SMT) contacts and an inner row of one or more printed through holes (PTH). The hybrid footprint design enables a data through put of at least 10 Gbps.
Abstract:
Systems and methods of interconnecting devices may include a connector assembly having a substrate, a set of input/output (IO) contacts, an antenna structure and transceiver logic. In one example, the transceiver logic may process one or more IO signals associated with the antenna structure and process one or more IO signals associated with the set of IO contacts.
Abstract:
Systems and methods of interconnecting devices may include an input/output (10) interface having one or more device-side data lanes and transceiver logic to receive a bandwidth configuration command. The transceiver logic may also configure a transmit bandwidth of the one or more device- side data lanes based on the bandwidth configuration command. Additionally, the transceiver logic can configure a receive bandwidth of the one or more device- side data lanes based on the bandwidth configuration command.
Abstract:
Disclosed is a scalable input/output interface that has multiple bays and includes a housing surrounding a plurality of pairs of substrates. A first substrate of the pair of substrates may have a first contact surface and a second substrate of the pair of substrates may have a second contact surface that opposes the first contact surface, wherein each substrate has a connection edge. At least one integrated buffer can be coupled to either the first side or the second side of each substrate. A plurality of rows of contacts can be coupled to the opposing surfaces of each substrate of the pair of substrates, wherein each row of contacts can be stacked substantially parallel to the connection edge. Each connection edge can also be coupled to a separate integrated buffer.
Abstract:
Systems and methods of interconnecting devices may include an input/output (IO) connector assembly having a voltage regulator, one or more signaling circuits, a first set of contacts, a second set of contacts connected to the one or more signaling circuits, and logic to receive a configuration command. The logic may also connect the first set of contacts to the voltage regulator if the configuration command corresponds to a first protocol. If the configuration command corresponds to a second protocol, on the other hand, the logic can connect the first set of contacts to the one or more signaling circuits.
Abstract:
Systems and methods of interconnecting devices may include an input/output (IO) connector having a buffer with an integrated voltage regulator. The integrated voltage regulator may include a first supply output and a second supply output, wherein the IO connector includes an IO power contact coupled to the first supply output. The IO connector may also include a logic power contact coupled to the second supply output. In one example, a host device may issue power management commands to the buffer in order to scale the second supply output independently of the first supply output.
Abstract:
Methods and systems may include an input/output (IO) interface that has an integrated buffer, a housing and a substrate disposed within the housing. The substrate may include a first side, a second side and a connection edge. The integrated buffer can be coupled to at least one of the first side and the second side of the substrate. A plurality of rows of contacts may be coupled to the first side of the substrate. Each row of contacts can be stacked substantially parallel to the connection edge. The substrate may have power outputs coupled thereto and the integrated buffer can include a voltage regulator that has a supply output coupled to the power outputs.
Abstract:
Systems and methods of interconnecting devices may include an input/output (IO) interface having one or more clock circuits, a power supply coupled to the one or more clock circuits, and logic to receive a rate adjustment command at the IO interface. The logic may also be configured to adjust a data rate of the IO interface in response to the rate adjustment command, and to adjust an output voltage of the power supply in response to the rate adjustment command.
Abstract:
The present disclosure provides techniques for increasing the power efficiency of re-drivers by providing a technique for a re-driver to recognize a variety of power states. A message generator may be located in a host device and may encode a signal indicating a change in a power state. The message may be transmitted to a message decoder located in a re-driver. The message decoder may decode the message and the re-driver may enter a power state in response to the decoded message.