Abstract:
In various example embodiments, an imaging system and method are provided. In an embodiment, the system comprises a first image sensor array with a first optical system to project a first image on the first image sensor array, the first optical system having a first zoom level. A second optical system is to project a second image on a second image sensor array, the second optical system having a second zoom level. The second image sensor array and the second optical system are pointed in the same direction as the first image sensor array and the first optical system. The second zoom level is greater than the first zoom level such that the second image projected onto the second image sensor array is a zoomed in on portion of the first image projected on the first image sensor array.
Abstract:
Methods and systems are provided which are adapted to process a microelectronic topography, particularly in association with an electroless deposition process. In general, methods are provide which include loading a topography into a chamber and supplying fluids to an enclosed area about the topography. In particular, a method is provided for forming a hydrated metal oxide layer. In addition, a method is provided for selectively depositing a dielectric layer and a metal layer upon a topography. A topography having a single layer with at least four elements lining a lower surface and sidewalls of a metal feature is also provided. A process chamber which includes a gate configured to either seal or provide an air passage to the chamber and a substrate holder comprising a clamping jaw with a lever are contemplated herein. A process chamber with a reservoir arranged above a substrate holder is also provided.
Abstract:
A universal substrate holder of the invention for treating wafer substrates in liquids is provided with a shaft and a rod slidingly inserted into the central opening of the shaft. The end of the shaft that protrudes into the bowl supports a base platform for the substrate, while the end of the rod that protrudes into the bowl has radial arms that rigidly support an annular plate with pins that can pass through the opening of the base platform so that they can support the substrate above the surface of the platform. The annular plate supports clamping jaws made in the form of two-arm levers with shorter arms and longer arms. The longer arms are heavier and therefore in the stationary state of the holder keep the jaws turned into an open position. When the shaft begins to rotate, the jaws are turned under the effect of centrifugal forces into positions of clamping the substrate with the shorter arms. When the rod is pulled down, the ends of the longer arms come into contact with the base platform and are turned into the clamping position. The substrate holder of the invention allows clamping and releasing of the substrate in positions of the substrate above the platform and in a position of the substrate on the base substrate, when the backside of the substrate is inaccessible to the process liquid.
Abstract:
A microelectronic topography includes a dielectric layer (DL) with a surface higher than an adjacent bulk metal feature (BMF) and further includes a barrier layer (BL) upon the BMF and extending higher than the DL. Another microelectronic topography includes a BL with a metal-oxide layer having a metal element concentration which is disproportionate relative to concentrations of the element within metal alloy layers on either side of the metal-oxide layer. A method includes forming a BL upon a BMF such that portions of a first DL adjacent to the BMF are exposed, selectively depositing a second DL upon the BL, cleaning the topography thereafter, and blanket depositing a third DL upon the cleaned topography. Another method includes polishing a microelectronic topography such that a metallization layer is coplanar with a DL and further includes spraying a deionized water based fluid upon the polished topography to remove debris from the DL.
Abstract:
Methods for forming a barrier layer (28, 30) with periodic concentrations of elements using electroless deposition techniques as well as structures resulting therefrom are provided. In addition, systems and methods affecting profiles of solutions dispensed across microelectronic topographies during electroless plating processes are provided. In particular, a method and an apparatus (80) are provided which are configured to dispense a deposition solution at a plurality of locations extending different distances from a center of a microelectronic topography each at different moments in time during an electroless plating process. Another method and accompanying electroless deposition chamber (130) are configured to introduce a gas into an electroless plating chamber above a plate (136) which is suspended above a microelectronic topography and distribute the gas to regions extending above one or more discrete portions of the microelectronic topography.
Abstract:
A universal substrate holder of the invention for treating wafer substrates in liquids is provided with a shaft and a rod slidingly inserted into the central opening of the shaft. The end of the shaft that protrudes into the bowl supports a base platform for the substrate, while the end of the rod that protrudes into the bowl has radial arms that rigidly support an annular plate with pins that can pass through the opening of the base platform so that they can support the substrate above the surface of the platform. The annular plate supports clamping jaws made in the form of two-arm levers with shorter arms and longer arms. The longer arms are heavier and therefore in the stationary state of the holder keep the jaws turned into an open position. When the shaft begins to rotate, the jaws are turned under the effect of centrifugal forces into positions of clamping the substrate with the shorter arms. When the rod is pulled down, the ends of the longer arms come into contact with the base platform and are turned into the clamping position. The substrate holder of the invention allows clamping and releasing of the substrate in positions of the substrate above the platform and in a position of the substrate on the base substrate, when the backside of the substrate is inaccessible to the process liquid.
Abstract:
The method for selective deposition of Co-W-P system films onto copper with palladium-free activation consists of creating hydrogen-rich complexes on the metal surface prior to deposition. More specifically, the method consists of creating the aforementioned complexes on the copper surfaces prior to electroless deposition of a Co-W-P system films. This is achieved by contacting the copper surface with reducing agents for a short period of time and under an elevated temperature. Such reducing agents comprise a hypophosphorous-acid-based or borane-based reducing agents such as dimethylamine borane. Hypophosphorous acid is preferred since it is more compatible with the electroless deposition solution.
Abstract:
In various example embodiments, the inventive subject matter is an image sensor and methods of formation of image sensors. In an embodiment, the image sensor comprises a semiconductor substrate and a plurality of pixel regions. Each of the pixel regions includes an optically sensitive material over the substrate with the optically sensitive material positioned to receive light. A pixel circuit for each pixel region is also included in the sensor. Each pixel circuit comprises a charge store formed on the semiconductor substrate and a read out circuit. A non-metallic contact region is between the charge store and the optically sensitive material of the respective pixel region, the charge store being in electrical communication with the optically sensitive material of the respective pixel region through the non-metallic contact region.
Abstract:
A microelectronic topography includes a dielectric layer (DL) with a surface higher than an adjacent bulk metal feature (BMF) and further includes a barrier layer (BL) upon the BMF and extending higher than the DL. Another microelectronic topography includes a BL with a metal-oxide layer having a metal element concentration which is disproportionate relative to concentrations of the element within metal alloy layers on either side of the metal-oxide layer. A method includes forming a BL upon a BMF such that portions of a first DL adjacent to the BMF are exposed, selectively depositing a second DL upon the BL, cleaning the topography thereafter, and blanket depositing a third DL upon the cleaned topography. Another method includes polishing a microelectronic topography such that a metallization layer is coplanar with a DL and further includes spraying a deionized water based fluid upon the polished topography to remove debris from the DL.
Abstract:
A microelectronic topography includes a dielectric layer (DL) with a surface higher than an adjacent bulk metal feature (BMF) and further includes a barrier layer (BL) upon the BMF and extending higher than the DL. Another microelectronic topography includes a BL with a metal-oxide layer having a metal element concentration which is disproportionate relative to concentrations of the element within metal alloy layers on either side of the metal-oxide layer. A method includes forming a BL upon a BMF such that portions of a first DL adjacent to the BMF are exposed, selectively depositing a second DL upon the BL, cleaning the topography thereafter, and blanket depositing a third DL upon the cleaned topography. Another method includes polishing a microelectronic topography such that a metallization layer is coplanar with a DL and further includes spraying a deionized water based fluid upon the polished topography to remove debris from the DL.